

Tri-Axial Hinge Knee Brace

Client: Dr. Sarah Kuehl - Mueller Sports Medicine Advisor: Dr. Joseph Towles - Dept. of Biomedical Engr.

> Team Leader: Conor Sullivan Communicator: Kevin Knapp BSAC: Jake Levin BWIG: Alex Yueh BPAG: Kaitlyn Reichl

Overview

- Problem Statement
- Design Constraints
- Motivation
- Background
- Current Device

- Prototype
- Preliminary Testing
- Preliminary Results
- Timeline
- Expenditures

Client Description

- Dr. Sarah Kuehl
 - Project Engineer at Mueller Sports Medicine

Figure 1: Mueller Sports Medicine logo.

Problem Statement

- Tri-Axial Hinge Knee Brace
 - Mimics proper knee flexion
 - Provides desirable amount of knee stabilization
- Current Issues
 - Straight profile does not match patient profile well - causing some discomfort
- Goal
 - Redesign the straight profile to better contour to as many patients with the fewest models

Design Constraints

- Lightweight: Aluminum
- Durable: >1 year
- Restrict Motion
 - Lateral Direction
 - Hyperextension
- Allow for proper range and motion of flexion
 - Tri-Axial Hinge
 - 180°
- Conform to as many patient's legs as possible
 - One-size fits all
- Comfort
- Low cost: < \$100

Motivation

- \$852 million is spent yearly on knee braces
- The market for knee braces is expected to grow by 4.9% by 2018
- Mueller receives 20+ complaints per month regarding discomfort of current model

Figure 2: Jordy Nelson just after suffering a knee injury

Background Current Knee Brace

Mueller.

- Fully Enclosed Sleeve
- Velcro Straps for fit
- Straight Arm Profile

Tri-Axial Hinge Motion

Figures 5-8: The Tri-Axial Hinge is capable of 180° of motion.

Figures 9 & 10: The current design that Mueller Sports Medicine uses in their knee braces.

Average Leg Dimensions

• Upper Leg Length = 47.73 cm

- Mid-Thigh Circumference = 51.62 cm
- $\frac{1}{4}$ Thigh Circumference = 41.68 cm
- Knee Circumference = 37.49 cm
- ¹/₄ Calf Circumference = 35.91 cm
- Mid-Calf Circumference = 36.40 cm
- Lower Leg Length = 45.32 cm

Figure 11: Image showing where leg measurements were taken.

Figure 12: The flat profile of the original design by Mueller

Figure 13: The original prototype which includes an angled arm structure to better conform to the leg

Figure 14: The adjustable hinge prototype which features a two screw locking mechanism

Figure 15: A closer look at the two screw locking system, which will allow the user to adjust to their individual leg.

Preliminary Static Testing

- Compression Test
 - MTS Machine
 - Loaded until failure
- Finite Element Analysis
 - Used Solidworks part
 - Determined failure strength of ABS+ plastic
 - Determined failure strength of 1060 Aluminum

Figure 16: Static testing setup of the Y-arm design in the MTS machine.

Preliminary Dynamic Testing

- Force Sensitive Resistors (FSRs)
 - FSRs change resistance when a load is applied
 - Used a voltage divider circuit and Arduino Uno to convert voltages to forces
 - 1 placed on distal end of each hinge
 - Walking, Squatting, and Standing Up

Figure 17: FSRs are attached to the hinges inside the knee brace being worn by a team member.

Preliminary Static Results

- MTS data of ABS+ matched FEA results
 - FEA of aluminum can predict MTS results
 - Only bends at design specification load

Figure 18: FEA results of a load of 163 lbs applied to ABS+.

Figure 19: FEA results of a load of 300 lbs applied to 1060 Aluminum.

Preliminary Dynamic Results

Straight Arm
 Y-Arm
 Tables 1-3: The results of preliminary dynamic testing shows the force of both the straight and Y-Arm designs on the thigh as the subject performs various movements.

Straigh Arm Inside

Y-Arm Inside

Straight Arm Outside

Y-Arm Outside

Tables 4-6: The results of preliminary dynamic testing shows the peak force of both the straight and Y-Arm designs on the thigh as the subject performs various movements. * represent a significant difference (p<0.05)

Areas of Improvement

- •Alter knee brace sleeve to accommodate prototype
- Static Testing
 - Verify aluminum FEA results by testing the fabricated Y-arm
 - Test the compressive strength of the Adjustable Hinge design
- Dynamic Testing
 - Strengthen FSR wires to prevent damage
 - Develop proper attachment of FSRs

Future Dynamic Testing

Combination of

- •FSRs
 - Measure the pinch forces from the hinge
- Motion capture
 - Compute forces impacting knee as well as the torque it generates
- Electromyography (EMG)
 - Determine muscle activation and if brace affects muscle forces

Figure 20: An example of motion capture testing to analyze gait.

Timeline

Fabrication and Evaluation Goals	Target Date
Fabricate and calibrate force sensitive resistors (FSRs)	3/4
Conduct compression testing using MTS machine	3/4
Write code for determining determining knee joint power from motion capture	3/11
Create dynamic testing protocol	3/11
Conduct FSR, Motion Capture, EMG data	4/15
Analyze and compare dynamic testing data to control data	4/29
Determine significance of knee brace in relation to knee torque, pinch forces, and muscle activation	4/29

Table 7: The projected timeline for the rest of the semester

Expenditures

ITEMS PURCHASED

Tefzel Wire (100 yds)	\$24.30	
Round Force-Sensitive Resistor (8)	\$66.73	
3D Printing (3 Y-arms, 3 Adjustable-Hinge)	\$58.53	
Stock Aluminum	\$105.88	
Total Cost of Items Purchased	\$255.44	
ITEMS TO BE PURCHASED		
Round Force-Sensitive Resistor (8)	\$66.73	
Total Cost of Items to be Purchased	\$66.73	
TOTAL EXPECTED COST (out of \$500 budget)	\$322.17	

Table 8: The current and planned expenditures for this project through the rest of the semester

Acknowledgements

Thank you to:

- Dr. Sarah Kuehl Project Engineer at Mueller
- Dr. Joseph Towles
- Dr. John Puccinelli
- Dr. Thomas Yen
- Dr. Mitch Tyler
- Alex Nguyen
- The COE Student Shop
- All of our data subjects
- All of the BME Resources

Sources

Information

- "Anthropometry And Biomechanics." National Aeronautics and Space Administration. Web. http://msis.jsc.nasa.gov/section3.htm
- "Anthropometric Reference Data for Children and Adults: United States, 2007–2010." Center for Disease Control. Web.
 http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf>
- "HG80® Premium Hinged Knee Brace." Mueller. Web.
 http://www.muellersportsmed.com/by-body-part/knee-braces-and-supports/hg80-premium-hinged-knee-brace.html>
- Keuhl, S. (2015, Sept. 11). Interview.
 - "US Market for Orthopedic Braces and Supports," PRNewsire. March 11, 2013. Web. http://www.prnewswire.com/news-releases/us-market-for-orthopedic-braces-and-supports-196849711.html>
- Images
 - http://www.westcoastmedicalsupply.com/Mueller_Hg80_Hinged_Knee_Brace_p/5401. htm
 - <u>http://www.muellersportsmed.com/archive/knee_mueller_green_hinged_adjustable.htm</u>
 <u>https://usatftw.files.wordpress.com/2015/08/usatsi_8763205.jpg?w=1000&h=600&crop=1</u>
 - http://hmrc.engineering.queensu.ca/images/GaitSubject_000.jpg

Questions?