

Miniature Microscope for Fluorescence Imaging

Advisor: Professor Jeremy Rogers

Client: Professor Matthew Merrins

Team Members

Team Leader- John Rupel

Communicator- Kadina Johnston

BSAC- Zach Alden

BPAG & BWIG- Kaitlyn Gabardi

Overview

- Problem Statement
- Background
 - FRET Microscopy
- Competing Designs
- Summary of PDS
- Design Alternatives
- Design Matrix
- Future Work

Problem Statement

- Client teaches human biochemistry lab
- Enzyme lactate dehydrogenase
- Fluorescence (Förster) Resonance Energy Transfer (FRET) biosensor
- Microscope excites lactate biosensor using LEDs
- Current microscope is expensive
- Goal is to build a low-cost microscope

FRET Microscopy- Background

- Energy transfer between two light-sensitive molecules (chromophores)
- Donor molecule absorbs energy from light source
 - Gets excited and emits lower energy photons
- Acceptor molecule
 - Energy is transferred to acceptor molecule
 - Lower wavelength emitted
- Client uses a Laconic FRET Biosensor

Competing Products

- Dino-Lite
 - Simple fluorescent set-up
 - Not FRET
- Lumascope 620
 - Broad-use FRET system
 - Expensive
- NightSea Model SFA
 - Stereo to fluorescent conversion system
 - No data acquisition

NightSea

Summary of PDS

- Function: single prototype FRET microscope
 - Excitation source 430 nm
 - FRET filters 470 nm (donor) 535 nm (acceptor)
 - Camera- detect and upload to free software analysis
- Accuracy: determine acceptor-donor FRET ratio
- **Ergonomics**: easy and intuitive to use by students
- Size: all non-essential microscopy components eliminated (eyepiece, etc.)
 - \circ Base size ~ 20 by 30 cm
 - \circ Height ~ < 45 cm
- **Cost**: < \$2,000

Design Alternatives

- Single-Shoot
- Filter-Swap
- Beam-Splitter

Design 1: Cost Analysis "Single-shoot"

Part	Cost
Camera	\$355
Objective Lens	\$196
Multi-bandpass filter	\$350
Tube Lens	\$150
LEDs	\$115
Stand	\$100
Circuitry/Power	\$50
Box	\$20
TOTAL:	\$1336 Infinite

Design 2: Cost Analysis "Filter-swap"

Part	Cost	
Camera	\$355	
Objective	\$196	
Filters	\$340	
Move Filters	\$10	
LEDs	\$115	
Tube Lens	\$150	
Stand	\$100	
Circuitry/Power	<mark>\$80</mark>	
Box	\$20	
TOTAL:	\$1366	

Design 3: Cost Analysis "Beam-Splitter"

Part	Cost
Cameras	\$710
Objective	\$196
Beam Splitter	\$113
LEDs	\$115
Multi-bandpass filter	\$350
Stand	\$100
Tube Lens	\$150
Circuitry/Power	\$50
Box	\$20
TOTAL:	\$1804 Infinite

Design Matrix

	Single-Shoot	Filter-Swap	Beam-Splitter
Cost (25)	3/5: 15	3/5 : 15	2/5: 10
Client Input (20)	3/5 : 12	5/5 : 20	1/5 : 4
Image Quality (15)	3/5 : 9	4/5 : 12	5/5 : 15
Ergonomics (15)	3/5 : 9	3/5 : 9	5/5 : 15
Dependability (15)	4/5 : 12	3/5 : 9	4/5 : 12
Manufacturability (10)	5/5: 10	3/5 : 6	3/5 : 6
Total:	67	71	62

Potential Pitfalls

- Detector not sensitive enough
- Timing of image acquisition
- Excitation Source bleed through
- Intensity of light source

Conclusion and Future Work

- Fabricate and test excitation source
- Properly space components
- Test prototype with mammalian cells

Questions?

San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, et al. (2013) A Genetically Encoded FRET Lactate Sensor and Its Use To Detect the Warburg Effect in Single Cancer Cells. PLOS ONE 8(2): e57712. doi: 10.1371/journal.pone.0057712

"Dino-Lite Digital Microscope," *Dino-Lite Digital Microscope*. [Online]. Available: http://www.dino-lite.com/products_detail.php?index_m1_id=9&index_m2_id=19&index_id=73. [Accessed: 16-Feb-2017].

"Lumascope 620," *Etaluma*. [Online]. Available: http://www.etaluma.com/products/lumascope-620-fluorescent-microscope/. [Accessed: 16-Feb-2017].

"Stereo Microscope Fluorescence Adapter," *NIGHTSEA*. [Online]. Available: https://www.nightsea.com/products/stereomicroscope-fluorescence-adapter/. [Accessed: 16-Feb-2017].

