

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Team Members: Brittany Glaeser, Kaitlin Lacy, Marissa Harkness, Zoe Schmanski, Jonathon Murphy **Client: Dr. Chris Vandivort** Advisor: Dr. John Puccinelli

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

CLIMBER'S FOREARM TRAINER

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- Medial Epicondylitis / "Climber's Elbow"
 - 0

 - 0

Figure 2: Hangboard [5]

CLIMBER'S FOREARM TRAINER

Figure 1: The 4 main muscle groups attached at the Micro-tearing of the pronator teres [2] medial epicondyle. overuse of the tendon without sufficient recovery

Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Current Devices

Finger Exerciser [7]

Plus [6]

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
 - Average forearm length of 23.1 26.4 cm
 - Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands

CLIMBER'S FOREARM TRAINER

- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Conclusion

 Full design has the ability to withstand the force exerted by the bands.

CLIMBER'S FOREARM TRAINER

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Final Design

Figure 7: Original design with updated resistance bands

Figure 10: FBD for the extensors and flexors

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Future Work

- Tightening mechanism for straps
- Injection Molding
 - Protolabs Manufacturing
- Removable pinch grip feature
- Testing
 - from bicep
 - MTS testing of resistance tubes
 - Usability survey

CLIMBER'S FOREARM TRAINER

A tension lock similar to those on backpack

 Considered as a mode of fabrication for final prototype after CAD designs are finalized

EMG to confirm isolation of forearm muscles

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

Acknowledgements

making this project possible:

• Dr. Chris Vandivort • Dr. John Puccinelli • Dr. Christa Wille

- We would like to thank the following for
- UW-Madison BME Faculty and Staff

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Abstract

"Climber's Elbow" is a condition experienced by many climbers where the tendon between the forearm flexors medial epicondyle of the elbow develops and microtears. The Forearm Trainer was designed to aid in prevention and rehabilitation of Climber's Elbow. The device includes variable resistances and a grip strengthener handle. The portable device strengthens the flexors and extensors as well as pronators and supinators of the forearm.

Motivation

Climber's Elbow, also known as Medial Epicondylitis, affects many rock climbers and can be treated through resistance training of the forearm flexors and extensors. A portable device can help aid in the prevention and rehabilitation of this condition.

Background

- 4 major forearm muscles [1]
- Pronator teres is the muscle of focus
- Movements: Pronation of hand Flexing of the elbow
- inner elbow) Flexor carpi radialis Pronator teres Palmaris longus Flexor carpi ulnaris Left Forearm

Connection at

lial epicondyle

Figure 1: The 4 main

medial epicondyle.

muscle groups attached at the

- Medial Epicondylitis / "Climber's Elbow"
 - Micro-tearing of the pronator teres [2]
 - overuse of the tendon without sufficient recovery
 - Imbalance in strength of flexor muscles versus the extensor muscles = excessive strain [3]

Figure 2: Hangboard [5]

Current Devices

vive

Figure 4: Handmaster Plus [6]

CLIMBER'S FOREARM TRAINER

Design Criteria

- Effectively targets forearm muscles
- Variable resistances of 5-30 lbs
- Adaptable to different sized forearms and hands
- Average forearm length of 23.1 26.4 cm
- Average upper arm length of 29.2 33.4 cm [8]
- Durable to withstand daily use for many years • Five to ten years for plastic pieces and straps
- Includes grip strengthening component
- Follows ASTM Standards of Fitness [9]
- Easy to use, safe, comfortable, portable and low cost

Materials

- 3D print PLA
- Rollerblade straps
- Sponge foam padding
- Flex seal
- Resistance bands
- Carabiners
- 1" Nylon straps
- Hook eye screws
- 0.25" Eyelets
- Brass knurled inserts

Total Costs: \$120.93

Testing and Results

FEA of Base Design

- Base design will withstand the stress of the bands
- Maximum deflection of 2.86 mm

FEA of Handle Design

- Handle design will withstand the stress of the bands
- Maximum deflection of 3.57 x 10⁻⁴ mm.

Figure 5: Strain representation of base design under resistance band load

Figure 6: Strain representation of handle design under resistance band load

Conclusion

