Model for Pre-Surgical Intracerebral Hemorrhage Planning

Client: Dr. Walter Block Advisor: Dr. Paul Campagnola Team Members: Joe Kerwin, Payton Parmett, Alex Truettner, Evan Ryser, Kurt Vanderheyden

Overview

- Problem Statement
- Broader Impact
- Material Choice Update
- Material Design Matrix
- Mechanical Testing
- Updated Container
- Future Steps
- Acknowledgements
- References

Problem Statement

- Goal is to create a gel model to simulate interior of brain with various clots to image and validate the effectiveness of mapping techniques
- Improve material to better represent human brain tissue properties
- Improve gel container to cooperate better with scanner shape minimize wave interference

Broader Impact

- A phantom brain is needed to acquire a range of stiffness measurements to be used in a database
- Design could lead to proper removal of clots
 - Drug treatment and suction vs suction alone
 - Save time in operating room
 - Save lives
- Prove accuracy of MRI modulus readings

Figure 1. T1 scan of heterogeneous ICH clots

Material Design Matrix

Criteria	Polyacrylamide (PA)		Gelatin		Polydimethylsiloxane (PDMS)	
Ease of Fabrication (30)	4/5	24	3/5	18	4/5	24
Biomimicry (30)	5/5	30	2/5	12	4/5	24
Cost (15)	3/5	9	5/5	15	2/5	6
Safety (15)	4/5	12	5/5	15	3/5	9
Duration (10)	5/5	10	1/5	2	4/5	8
Total (100)	85		62		71	

Material Choice Update

- Using PA as an alternative to alginate
- Ideally will get us closer to the 1 kPa range in stiffness
 - Want to replicate mechanics of blood clots
- Polymerize at room temperature overnight to obtain less stiff samples

Mechanical Testing

- Want to obtain shear modulus for PA blood clot samples
 - More ideal measure for viscoelastic materials
- Brain is incompressible; measuring shear will be more realistic

Figure 2. Previous DMA data of 1% alginate

Figure 3. Sample expected rheometry data http://www.tainstruments.com/pdf/literature/AAN016_V1_U_StructFluids.pdf

Updated Container

- Updated shape with CT scans provided of skull and neck via MeshMixer \rightarrow 3D print
- Incorporate sinuses/fluids into model

Figure 4. Container creation in MeshMexer

Figure 5. Isolated internal acoustic canal in 3DSlicer

Future Steps

Materials:

- Obtain polyacrylamide hoping to work with Dr. Masters
- Find procedure to obtain ideal biomimicry
- Bring samples for rheometry testing
- Reiterate as needed

(Alex, Evan, Joe)

Container:

- Create new shape in MeshMixer with CT scans
- Use alginate until PA is available
- Work on phase issues
- Incorporate more advanced features

(Kurt, Payton)

Acknowledgements

- Dr. Walter Block
- Dr. Paul Campagnola
- Dr. Christa Wille
- Dr. Aviad Hai
- Dr. Kristyn Masters
- Dr. Julie Morasch
- Luke Summey
- Elizabeth Bremer
- Anna Kiyanova
- Robert Moskwa

References

[1] J. Biller, "Faculty of 1000 evaluation for CT angiography 'spot sign' predicts hematoma expansion in acute intracerebral hemorrhage.," *F1000 - Post-publication peer review of the biomedical literature*, May 2009.

[2] A. Denisin and B. Pruitt, "Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications", *ACS Applied Materials & Interfaces*, vol. 8, no. 34, pp. 21893-21902, 2016. Available: 10.1021/acsami.5b09344.

[3] TA Instruments, 2021. Frequency sweep on a simulated fuel material. [image].