

Final Design and Testing Protocols

- Johnson Health Tech uses Delsys Trigno sensors to collect acceleration data
 - \circ $\,$ $\,$ One sensor at the sternum and two at the back of each heel $\,$
- JHT currently has no means of attaching the chest sensor and uses athletic tape to attach the sensors at the heels
- It is our goal to design and fabricate a sensor holder for both the chest and heels which is safer and more durable

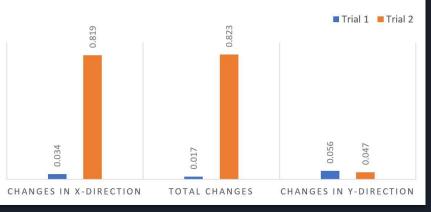
Impact

A reliable and easy to use method for attaching Delsys Trigno sensors will result in easily obtained accelerometer data

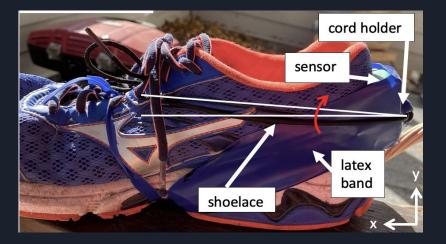
- Accelerometers can be used to determine:
 - Forces on the body
 - Step rate
 - Relative body segment velocities
- Eliminates the need for a force plate
- Accelerometer data gives JHT the ability to compare different exercise equipment
- This data can also be collected to better understand and possibly predict risk of injury

Chest Strap

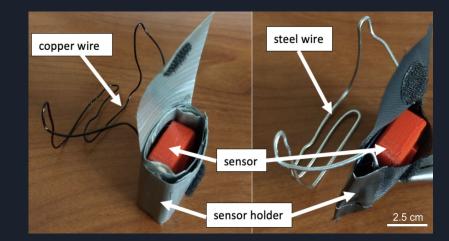
- Minimum length 63cm
- Maximum length unstretched 129 cm
- Maximum stretched length ~240 cm



Chest Strap Test Results


- Used Kinovea to measure movement
- One dot on the user's skin, one on the sensor
- Only tested over one type of material

CHANGES IN THE CHEST BAND SENSOR POSITION (CM)



Shoe Sensor Holders

The Straps Design

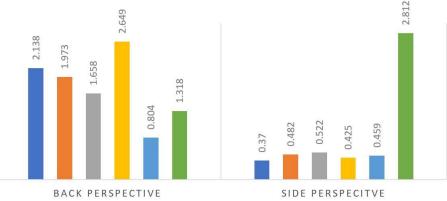
The Clip Designs

Previous Testing Protocols

Phase 1- Straps Only Ran and Marked Sensor Position

Phase 2- Both Designs

Motion Capture (kinovea) tracked movement


CHANGE IN SENSOR POSITION (CM) OF STRAP DESIGNS

TRIAL 4 *NO UPPER STRAP

AVERAGE CHANGE IN DISTANCE (CM) PER FRAME OF VIDEO

Copper Wire 1 Copper Wire 2 Steel Wire 1 Steel Wire 2 Straps 1 Straps 2

Shoe Sensor Holder Test Results

TRIAL 3

0.0

Phase 1-Outlier of 1.3 cm for trial 1

0.3

0.0

TRIAL 2

1.3

0.5

TRIAL 1

Phase 2- Both Designs First Straps = flat bottom Second Straps = grooved bottom

	p-Value Back	p-Value Side
desired value	1.0 cm	0.2 cm
Copper 1	0.004	0.342
Copper 2	0.007	0.253
Steel 1	0.028	0.226
Steel 2	7.75 x 10 ⁻⁴	0.296
Straps 1	0.250	0.270
Straps 2	0.141	5.87 x 10 ⁻⁴

Improvements this Semester

- The Clip design will remain the same, but a new material will be used for the wire.
- The Straps design will get a pocket for the sensor and new material for the upper straps.

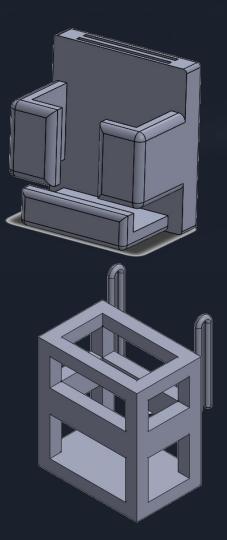
Timeline

Project Goal	Deadline
Finalize Journal to Publish Project In	2/19/21
Determine Changes to Finalize Designs	2/19/21
Order Materials for Adjustments	2/19/21
Finalize Testing Plan	2/24/21
Test both Designs at Johnson Helath Tech Facility	2/26/21
Preliminary Deliverables	3/3/21
Analyze Testing Data	3/5/21
Make Adjustments Based off of Test Data	3/19/21
Final Deliverables	4/28/21

Testing Plan

- Johnson Health Tech Trigno Sensors
- Gym/Treadmill Motion Capture (Kinovea)
- Engineering Hall Motion Capture

Testing for Shoe and Chest Designs:


- Controls
 - Marker on the shoe/chest
 - Keep distance between test subject and camera the same
 - Use a tripod to keep camera height consistent
- Will test each design on multiple people

Other Materials

- Create a user manual
 - Step-by-step instructions on assembly/wear
 - Cleaning and general care
- Improve upon the SolidWorks imaging

Budget (Past)

Description	Total
Component 1	-
1.5 in Elastic Strap (11 yards)	10.99
Component 2 1.5 in Double Side Release Buckle	6.98
Component 3 Cable Clips, ONME 6 Pack Cable Holder	4.99
Component 4	
Letsfit Resistance Latex Bands Component 5	5.09
18 Gauge Anezus Craft Wire Component 6	10.99
Adafruit LSM303AGR Accelerometer Magnetometer - STEMMA QT Qwiic	8.95
Adafruit LSM6DS33 + LIS3MDL - 9 DoF IMU with Accel / Gyro / Mag - STEMMA QT Qwiic	9.95
Component 8	
Adafruit ItsyBitsy nRF52840 Express - Bluetooth LE	17.95
	\$91.28

Budget (Future)

Total
\$9.48