

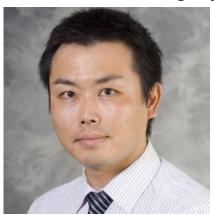
Guidewire Organizer for Endovascular Catheter Procedures

Team Leader: Tatum Rubald

Communicator: Addison Dupies

BWIG: Rachel Krueger

BSAC: Alex Pudzisz


BPAG: Victoria Heiligenthal

Rache

Client & Advisor

Client: Dr. Dai Yamanouchi

 Specialties: vascular and endovascular surgery

Advisor: Dr. Colleen Witzenburg

Biomedical Engineering

Problem Statement

- Must use multiple guidewires during a single procedure.
- Guidewires are hard to manage (tangled and disorderly).
- Aiming to increase procedure efficiency and safety.
- Must be easy to remove the wire while in the operating room.
- Device will consist of two parts.

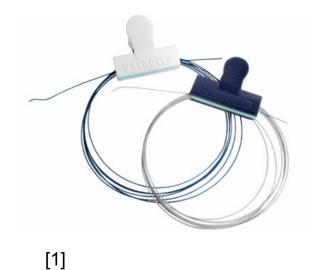
Product Design Specifications

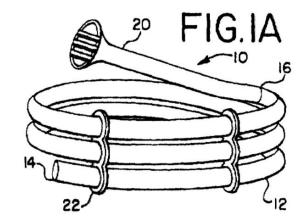
- The project consists of two pieces wheel and stand
- Determine and finalize the dimensions* of the current guidewire wheel design
- Sucessfully load guidewires of varying stiffnesses
- The wheel stand will stack three guidewire wheels
- Guidewires must be able to be removed from wheel while on stand
- The final market device must have biocompatible properties and be steralizable

Background


Current Situation

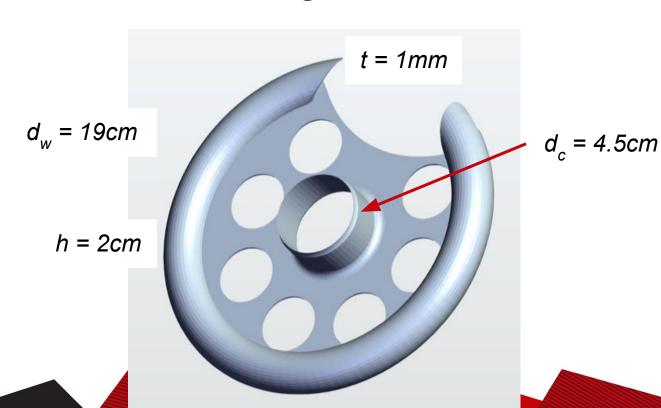
Cath Clip [1]


Original Dispensing Tubing [2]


Wet Towel

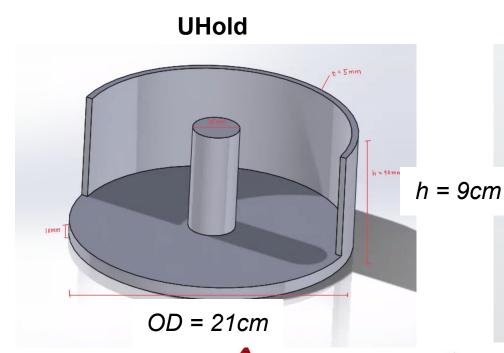
Competing designs

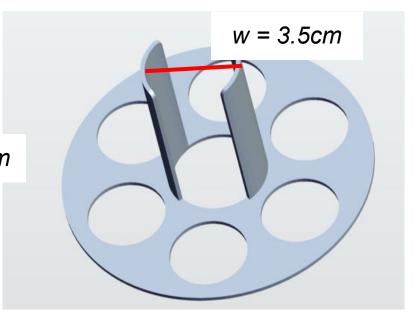
Cath Clip



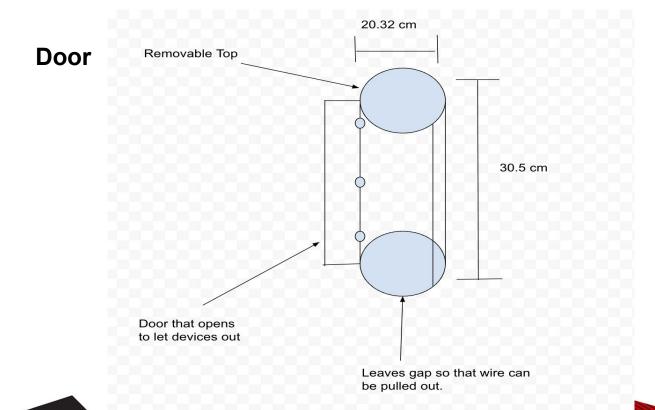
 Medical guidewire storage method and apparatus

[3]


Current Wheel Design


Tatum 7

Design Ideas



DYStand

Design Ideas (cont.)

Design matrix

Design	UHold		130.56mm x 130.96mm x 80.00mm 5.511n x 5.510m x 3.1500n 1.864 in ³ . DYStand		Door	
Efficiency (30%)	5/5	30	5/5	30	2/5	12
Learning Curve (25%)	4/5	20	5/5	25	3/5	15
Compatibility (20%)	4/5	16	5/5	20	3/5	12
Durability (15%)	5/5	15	3/5	9	3/5	9
Safety (10%)	5/5	10	3/5	6	3/5	6
Total for each design:	91		90		54	

Future Work

- Fluid stand design because it cannot be too bulky
- The wheel diameter will be finalized
- Complete quantitative testing and analysis of the wheel
- Ensure the stand device is suitable for wheel device

Acknowledgements

We would like to thank our client, Dr. Dai Yamanouchi, and our advisor,

Dr. Colleen Witzenburg, for their support and guidance throughout this project.

Victoria 12

References

[1] "Dropped and damaged devices? Cathclip can help.," CathClip. [Online]. Available: https://www.cathclip.com/. [Accessed: 22-Feb-2022].

[2] "Guidewire & Eamp; Catheter Accessories," Qosina. [Online]. Available: https://www.qosina.com/vascular-access-guidewire-catheter-accessories#gref. [Accessed: 22-Feb-2022].

[3] "EP1145730A1 - Medical Guidewire Storage Method and apparatus," Google Patents. [Online]. Available: https://patents.google.com/patent/EP1145730A1/en. [Accessed: 22-Feb-2022].