Dead-Blow Hammer for Orthopedics

Client: Dr. John Wollaeger Team Members: Billy Brown, Samuel Ferris, Connor Link, Isaac Krause Advisor: Dr. Tracy Jane Puccinelli

Presentation Overview

- Problem Statement
- II. What is a Dead Blow Hammer?
- III. Broader Impact
- IV. Previous Work
- V. Upcoming Plans
- VI. Other Considerations

Problem Statement

- Orthopaedic surgeries involving joint replacement take a lot of force to perform effectively
- Want to find a way to...
 - Limit blowback from the hammer when striking the target
 - Increase the amount of force generated by a single strike with the same swing velocity

Figure 1: Coronal (left) and sagittal (right) views of a knee replacement [1].

Dead Blow Hammer

- Primarily used in the construction industry
 - Minimize damage to the struck surface
 - Allow one to help control their striking force
 - Produce minimal rebound comparatively
- Important Criteria:
 - Approximately 2 pounds
 - Exert 30 kN of force
 - Withstand 40 kN of force
 - Withstand the autoclave sterilization process (121°C) [4]
 - FDA rule set by Code of Federal Regulations Title 21, Sec.
 878.4800 [5]

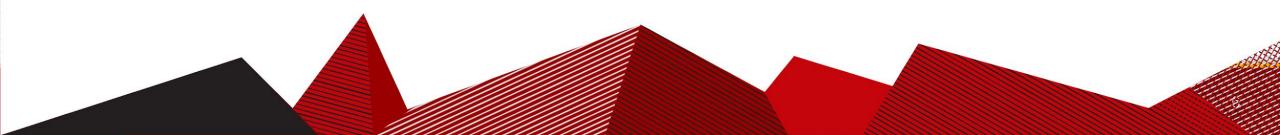
Figure 2: Dead-blow hammer for construction and manufacturing (top) [2] and orthopedic mallet (bottom) [3].

Broader Impact/Competing Designs

Broader Impact

- Make orthopedic surgeries more efficient and less strenuous
- Increase the longevity of the orthopedic surgeons themselves
- Give people a variety of options when it comes to their health and well being

Competing Designs


- Several foreign patents exist currently
- None are very alarming in terms of similarity
- Not utilized effectively in the medical industry as of right now

Previous Work

Final Design

- <u>Components:</u>
 - Chamber with one threaded hole
 - \circ One threaded end cap
 - \circ One pressed end cap
 - Pressed handle
- <u>Materials:</u>
 - 304 Stainless Steel
 - Compare to 316L Stainless Steel

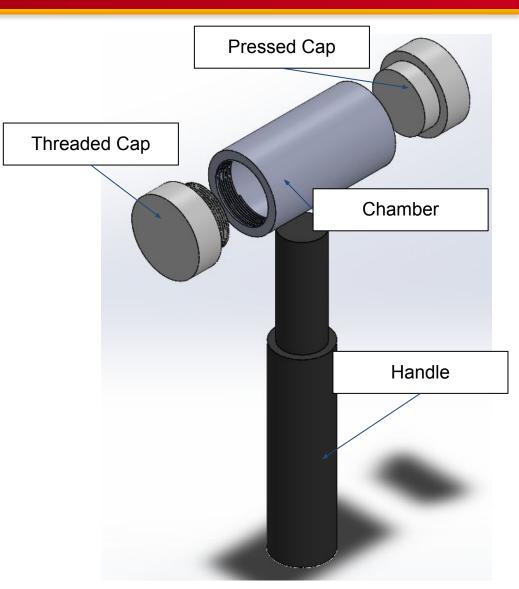


Figure 3: Solidworks Design for final mallet

Preliminary Results

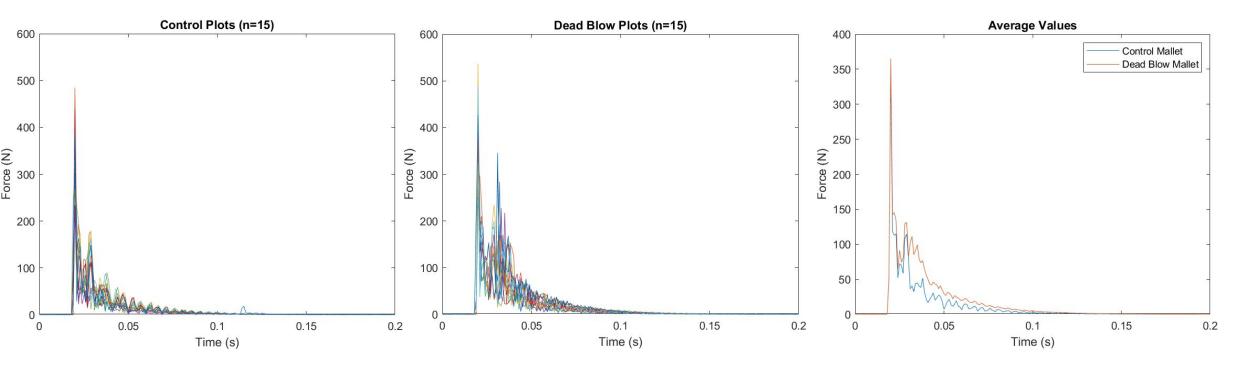
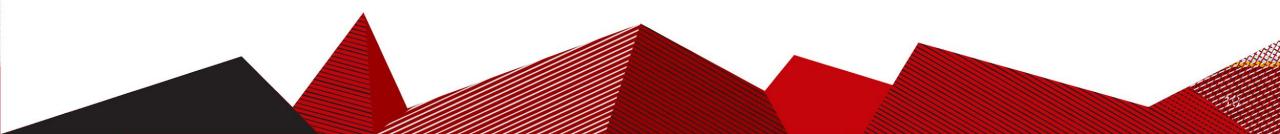


Figure 4: (a) Impact curve of 15 strikes with the PLA control mallet. (b) Impact curve of 15 strikes with the PLA dead-blow mallet. (c) Impact peak of the average values for the two testing conditions at each time point


Lessons Learned

- Fabrication
 - Stainless steel is very difficult to fabricate Outsourcing Fabrication
 - Threads may add extra unnecessary costs (for prototype validation)
 - Use of spanner wrench
- <u>Materials</u>
 - 316L stainless steel is particularly expensive, 304 stainless is similar in properties
 - Galling occurs with stainless on stainless contact (Anti-Seize)
- <u>Testing</u>
 - The force plates do not withstand the max force of a swing
 - Requires creative solutions

Upcoming Plans

Semester Overview

- Order parts and materials for our design (Feb. 16)
- Ship out to a fabricating company of our choice (Feb. 23)
- Begin drawing up and finalize intricate testing protocols (March 1)
- When our design is fabricated
 - Conduct testing with proper protocols (March 15)
 - Make conclusion(s) based on those results
 - Retest if needed (April 1)

Fabrication

- Cost of fabricating original design was too much
- Changes must be implemented to reduce the cost
 - Weld the shaft and the head together; creating one piece
 - Decrease the thread length on the screws of the caps
 - Buy our own materials and ship it out to the fabricator
- Rough Cost Estimate:
 - Original: \$1400 -\$1500
 - New Model: \$300 \$400
- Physical Sciences Lab (PSL)

Testing

- Retest using force plate
 - IF allowed (talk with Dr.Willie)
- Change percentage of beads to find maximum effect
 - Literature states 75-85%
- Compare impulse peaks with different percentage of beads

13

Budget

- Flexible budget
- Next prototype less than \$500
 - Projected cost from Team Lab about \$300
- Continue to check in with Dr. Wollaeger with quotes

Table 1: Budget for the remainder of the semester. Note the 20% contingency added to the total.

Name	Class	Description	Cost
Round Steel (304) - Caps	Material	McMaster-Carr	\$47.16
Round Steel (304) - Handle	Material	McMaster-Carr	\$24.98
Tube Steel (304) - Chamber	Material	Speedy Metals	\$24.93
Higher Pressure Anti-Seize	Material	McMaster-Carr	\$14.82
PSL Costs	Fabrication	Best estimate to date	\$200.00
Contingency	Misc.	20% contingency	\$62.38
		Total	\$374.27

Packaging/Documentation

- How this will be packaged is still unknown
- Will include a safety manual
 - Safety information regarding the metal beads
 - What do do if anything breaks before/during/after use
 - Storage information and estimated duration of the product

References

[1] "Knee Replacement" Mayo Clinic. [Online]. Available at:

https://www.mayoclinic.org/tests-procedures/knee-replacement/about/pac-20385276> [Accessed 10 Oct. 2021].

[2] "Bon Tool 4 lbs. Dead Blow Hammer" *The Home Depot*. [Online]. Available at: https://www.homedepot.com/p/reviews/Bon-Tool-4-lbs-Dead-Blow-Hammer-21-144/302568545/1 [Accessed 10 Oct. 2021].

[3] "Bone Mallet" *Integralife*. [Online]. Available at:

https://www.integralife.com/bone-mallet/product/surgical-instruments-hospitals-surgery-centers-tissue-banks-jarit-orthopedic-mallets-bone-mallet [Accessed 10 Oct. 2021].

[4] "Autoclave Use." *Princeton.* [Online]. Available at: https://ehs.princeton.edu/book/export/html/380 [Accessed 23 Sept. 2021].

[5] Accessdata.fda.gov. 2021. *CFR* - *Code Of Federal Regulations Title 21*. [Online] Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=878.4800 [Accessed 24 Sept. 2021].

Questions?

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON