Microscope Cell Culture Incubator

Team: Katie Day, Maya Tanna, Sam Bardwell, Drew Hardwick, Bella Raykowski Advisor: Dr. Melissa Kinney Client: Dr. John Puccinelli Date: 02/25/2022

Figure 1: Cell Culture Plates [1]

Background Information

- **Client:** Dr. John Puccinelli; Associate Chair of the Undergraduate Program
- Cell Cultures
 - Lab method for the use of studying cell biology, replicating disease mechanisms, and investigating drug compounds [2]
 - Use both primary, transformed, and self-renewing cells
- Incubators
 - Replicate cells' natural conditions in order for optimal growth
 - Natural Cell Environment 37°C, pH = 7.2-7.4, 95% humidity [3]
 - Cost: \$500-\$40,000 [4]
- Live Cell Imaging
 - Allows researchers to continually view cell development
 - Need incubator on a microscope in order to keep cells alive for imaging

Figure 2: On-stage incubator [4]

Problem Statement

- Purpose: Develop a low cost cell culture * incubation chamber that fits on a microscope stand (<310x300x45mm), does not interfere with the lens optics, and is capable of live cell imaging.
- * Current commercially available systems
 - Sometimes result in evaporation from \succ low volume cultures
 - Expensive \succ
 - Too large \succ
 - Enclose the entire microscope \succ

Figure 2: Cell Culture Procedure [5]

PDS Summary

Performance requirements:

- Compatible with an inverted microscope in both size and function
- Maintain an internal environment of 37°C, 5% CO₂, and 95-100% humidity

Safety:

• Biosafety Level 1 Standards [6]

Accuracy and Reliability:

- Temperature of $37^{\circ}C \pm 0.5^{\circ}C$, humidity of >95%, and CO₂ levels of 5% ± 0.1%
- Maintain internal environment for at least 1 week

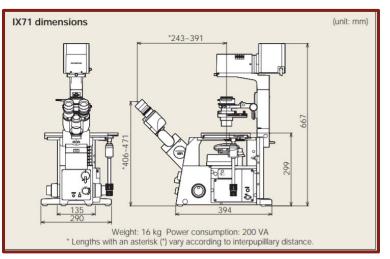


Figure 3: Measurements of Inverted Microscope [7]

PDS Summary cont.

Size:

- Incubator < 310x300 mm with a thickness < 45 mm
 Materials:
- Transparent top and bottom surfaces

Target Production Cost:

• <\$100

Competition:

- Previous BME 200/300 design projects
- Portable Live-cell Imaging Box ~ \$400 materials
- Elliot Scientific and OkoLabs Stage Top Incubators[4] ~ \$400-\$1,000

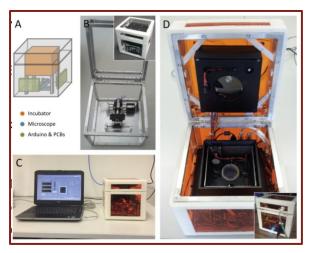


Figure 4: Portable Live-Cell Imaging Platform [8]

DEPARTMENT OF

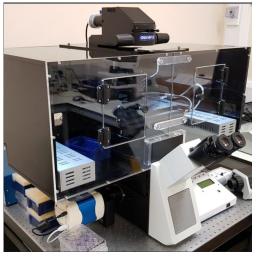


Figure 5: Elliot Scientific Stage Top Incubator [4]

Fall 2021 Work

Fabrication

- 3D printed PLA plastic via UW-Makerspace
- Thermistor was used for temperature and humidity
- NDIR CO₂ Sensor used for CO₂ percentage reading

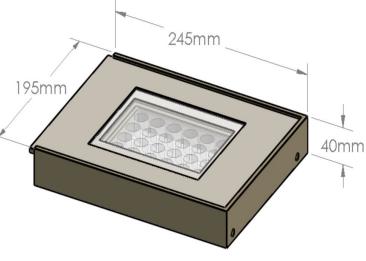


Figure 6: Final Prototype CAD drawing

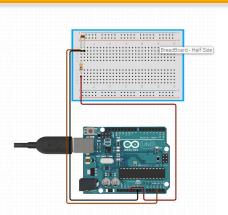


Figure 7: Thermistor Circuit Diagram

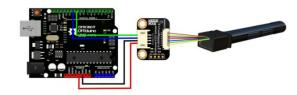
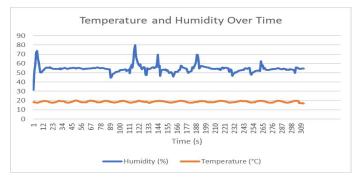


Figure 8: CO₂ Circuit Diagram


Fall 2021 Work

<u>Results</u>

- Temperature constant at 20°C
- Optical Analysis showed minimal difference in the optical clarity of the microscope with and without the glass plate covering

<u>Conclusions</u>

- Materials were not producing desired results
- Glass is usable
- Humidity calculations were not accurate

Figure 9: Temperature and Humidity Results

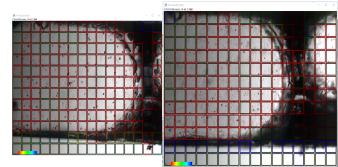


Figure 10: Optical analysis from ImageJ of microscopic cells with glass (left) and without glass (right)

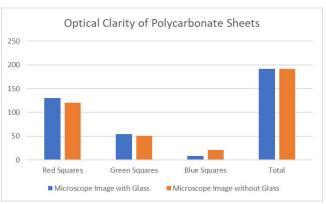


Figure 11: Optical Analysis of Polycarbonate Sheet Results

Preliminary Design #1 Hinge Top Acrylic Incubator

Strengths:

- Tightly sealed
- Lowest in Cost
- Allows for copper tubing and 1L water bed for thermal conductivity

Weaknesses:

- More sources for problems
- Most fabrication

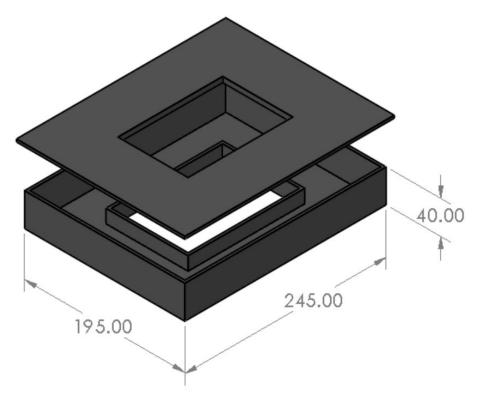


Figure 12: Solidworks Image of Preliminary Design #1 (all units in mm)

Preliminary Design #2

Slide Top Acrylic Incubator

Strengths:

- Similar concept as last semester design
- Less internal environment lost if someone had to check the inside
- Allows for copper tubing and 1L water bed for thermal conductivity

Weaknesses:

• Not completely sealed

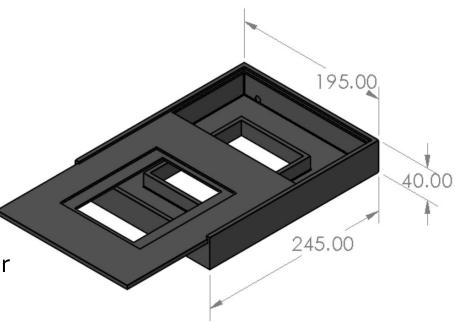


Figure 13: Solidworks Image of Preliminary Design #2 (all units in mm)

Preliminary Design #3

3D Printed Incubator

Strengths:

- Easy fabrication
- Reusable SOLIDWORKS file
- Allows for copper tubing and 1L water bed for thermal conductivity

Weaknesses:

- Cost
- Potential for leaking
- Brittle Material

Figure 14: Solidworks Image of Preliminary Design #3 (all units in mm)

Design Matrix

- Internal Environment: 37°C, 5% CO₂, and 95-100% humidity
- Microscope compatibility: product < 310x300x45mm
- Accuracy and Reliability
- Ergonomics
- Cost: <\$100
- Life in service: up to one week
- Safety

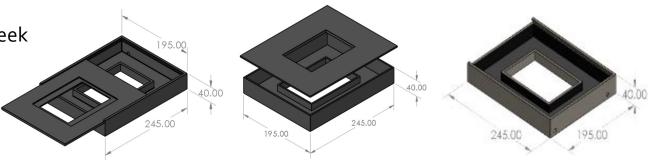
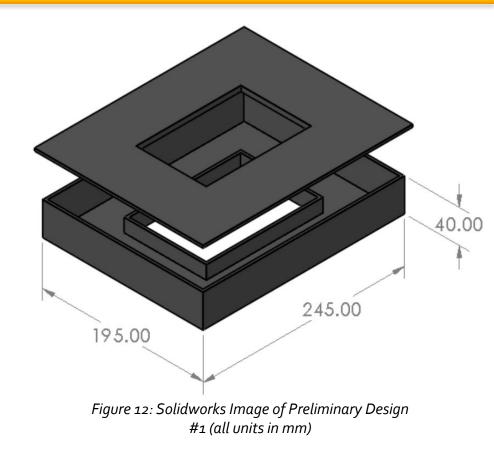


Figure 15: Solidworks Images for Preliminary Designs #1-3 (all units in mm)


Design Matrix for Fabrication

			Hinge Top Acryllic Incubator		Slide Top Acryllic Incubator		245.00 3D Printed Incubator	
Rank	Criteria	Weight	Score (5 max)	Weighted Score	Score (5 max)	Weighted Score	Score (5 max)	Weighted Score
1	Internal Environment	25	5	25	4	20	4	20
2	Microscope Compatibility	20	5	20	5	20	5	20
3	Accuracy and Reliability	20	4	16	4	16	3	12
4	Ergonomics	15	5	15	5	15	5	15
5	Cost	10	4	8	4	8	3	6
6	Life in Service	5	5	5	5	5	4	4
7	Safety	5	5	5	5	5	5	5
	Sum	100	Sum	94	Sum	89	Sum	82
		* All box o	limesions are in mi	limeters				

Proposed Final Design

- Design #1
- Use of copper pipe for thermal conductivity
- 1L waterbed
- Compatible with Thermistor, NDIR CO₂ Sensor

Future Work

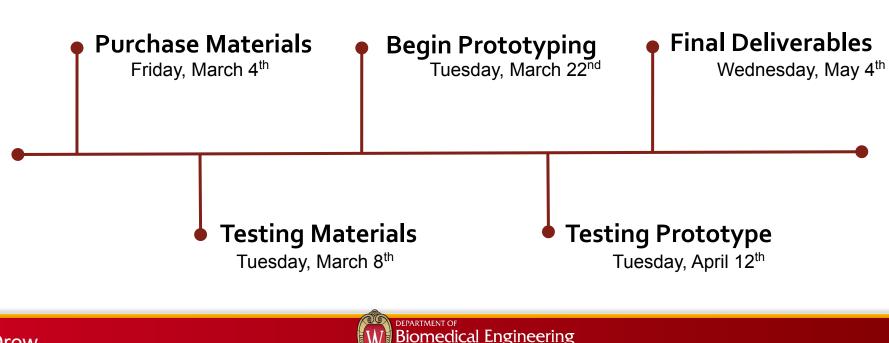

- 1. Laser cut acrylic to fabricate the box
- 2. Order materials
- 3. Copper Tubing
- 4. Develop CO₂ input
- 5. Conduct thorough testing

Figure 16: UW MakerSpace Logo [10]

Upcoming Project Goals

NIVERSITY OF WISCONSIN–MADISON

Special Thanks

Dr. John Puccinelli Melissa Kinney **BME** Department

References

- 1. Sponsored by BINDER GmbHApr 10 2014, "Application of binder incubators for human skin cell cultures," *AZoM.com*, 26-Apr-2019. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=10891. [Accessed: 11-Oct-2021].
- 2. C.-P. Segeritz and L. Vallier, "Cell culture: Growing cells as model systems in vitro," *Basic Science Methods for Clinical Researchers*, 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149418/. [Accessed: 11-Oct-2021].
- White Paper No. 29 CO incubators best practices." [Online]. Available: https://www.eppendorf.com/product-media/doc/en/151861/Eppendorf_CO2-Incubators_White-Paper_029_CO2-Incubators_Best-Practices-Selection_Set-up -Care.pdf. [Accessed: 11-Oct-2021].
- 4. "Microscope Incubation Systems," *Elliot Scientific Website*, 2020. [Online]. Available: https://www.elliotscientific.com/DPMH-Microscope-Incubators. [Accessed: 23-Feb-2022].
- "Proper care and maintenance for a Cell Culture Incubator." [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LED/Warranties/TNCO2CAREFEED-EN.pdf. [Accessed: 11-Oct-2021].
- 6. A. Trapotsis, "Biosafety levels 1, 2, 3 & amp; 4: What's the difference?," Consolidated Sterilizer Systems, 01-Apr-2020. [Online]. Available: https://consteril.com/biosafety-levels-difference/. [Accessed: 20-Sep-2021].
- "Research IX71/IX81 olympus america." [Online]. Available: https://www.olympusamerica.com/files/seg_bio/IX71IX81%20brochure.pdf. [Accessed: 11-Oct-2021].
- 8. M. P. Walzika, V. Vollmar, T. Lachnit, H. Dietz, S. Haug, H. Bachmann, M. Fath, D. Aschenbrennera, S. A. Mofradab, O. Friedrich, and D. F. Gilbert, "A portable low-cost long-term live-cell imaging platform for biomedical research and education," *Biosensors and Bioelectronics*, vol. 64, pp. 639–649, Feb. 2015.
- 9. UW MakerSpace. .

Questions?

