

Automatic Intramyocardial Stem Cell Injection Device

Team Heartthrob Parker Esswein, Macy Frank, Lars Krugel, and Gab Zuern

Client: Dr. Amish Raval Advisor: Dr. Aviad Hai 02/10/2023

Presenter: Macy Frank

Background

- Cardiovascular disease is the leading cause of death
 - 696,962 deaths in the U.S in 2020 [Prevention, 2019]
- Current cardiovascular disease treatment
 - 25 50% mortality rate within
 5 years [Rheault-Henry et al., 2021]
 - Limited success with current treatments (e.g., LVADs and medications)

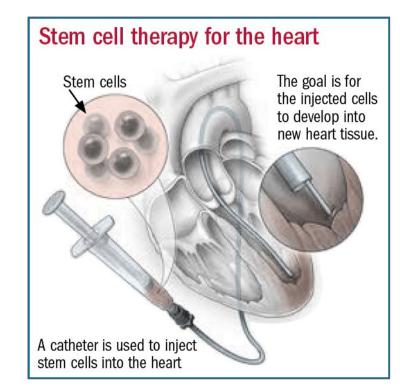


Figure 1: Stem cell therapy in the myocardium [Health.Harvard.edu].

Presenter: Macy Frank

Background

- Treatment via novel approach
 - Intramyocardial stem cell injections have therapeutic potential [Hmadcha et al., 2020]
 - Derived from bone marrow [Boyle et al., 2010]
- Key Considerations:
- Flow rates
 - \circ $\,$ Too fast, slow, or inconsistent
 - Damaging to cells [White, 2016]
 - Off-target effects
 - Cell clumping
- Force / Shear stress

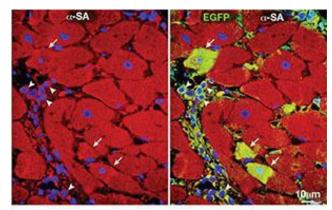


Figure 2: Successful stem cell therapy for heart failure [ncbi.nlm.nih.gov].

Problem Statement

- Automated injection device designed for intramyocardial stem cell delivery
 - Eliminate manual operations
 - Improve efficacy
 - Reduce issues such as hand fatigue
- Force detection feedback system specific to stem cell injection in the myocardium
 - Catheter placement and blockage assistance
- Research tool for stem cell injection therapies

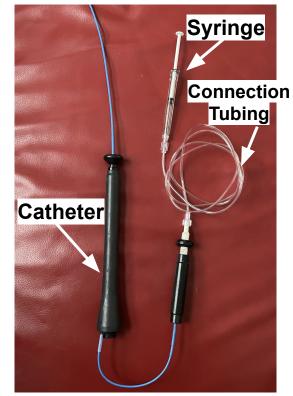


Figure 3: Set-up of the catheter, connection tubing and syringe.

Competing Designs

- Baxter Infus OR Syringe Pump ABC 4100 [Wilburn, 2020]
 - Controlled volume of anesthesia
 - Syringe is loaded, flow rate set, clicking start
 - Sense syringe plunger force and movement
- Pressure Sensing Syringe [DeVries, 1988]
 - Pressure sensitive piston between the syringe plunger and the thumb
 - Provides a tactile signal when a specified pressure is applied

Figure 4: The "Baxter Infus OR Syringe Pump ABC 4100" [Wilburn, 2020].

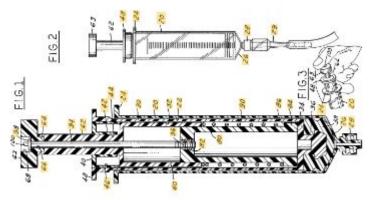
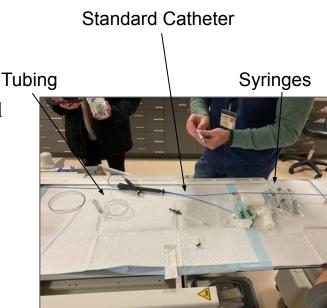


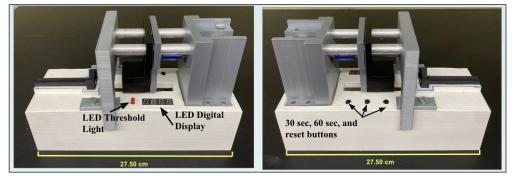
Figure 5: US Patent US4759750A [DeVries, 1988]

Presenter: Macy Frank

Product Design Specifications

- Electronically inject MSCs into the myocardium
 - Maintain cell viability 5% reduction threshold
- Compatible with standard catheters, medical grade tubing, and 1 mL procedural syringes
- 30 and 60 second injection rates (± 1.0 second)
 - Deliver 0.5 mL of solution [Raval et al., 2021]
- Force sensing device and visual feedback
 - Threshold = 2.40 N [Doumit et al., 2016]
 - \circ Continuously display applied force (< 5% error)
- Generate MSC injection conversance
 - Correlate force applied with tissue stiffness
- Budget of \$3000 and manufacture cost of \$500 [Raval, 2022]




Figure 6: Standard catheters, medical grade tubing and procedural syringes

Presenter: Lars Krugel

Current Design

Prototype Features

- 30 second and 60 second injection rates
 - Start, pause, reset, and adjust functions
 - NEMA-17 Stepper Motor
- Applied force feedback system
 - FSG-series force sensor
 - Arduino Microcontroller and calibration curve
 - LED threshold light warning and digital display
- 1 mL syringe mold

Figure 7: Solidworks drawing of final prototype assembly.

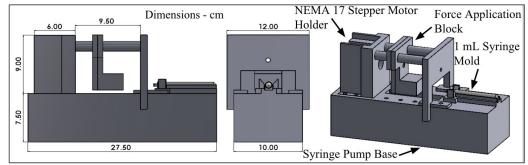


Figure 8: Right and Left end view of the injector prototype displaying the threaded bolt force system, injection buttons, and feedback system.

Presenter: Lars Krugel

Fabrication Plans

- FSG feedback circuit updates
 - 0.00 V and 9.00 V supply to INA129 amplifier
 - Develop a printed circuit board
- Reduce injector size
- Improve force application system
 - Partially threaded rod
 - Screw holes built in
 - More reliable coupler Cyclic fatigue resistance
- 1 mL syringe clamp
- Procedural applicability
 - Operator rate selection

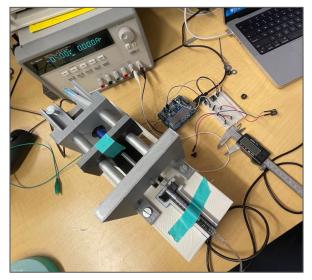


Figure 9: Injection testing of the system, displaying the required -5.00 V source for the FSG circuit via a power supply.

Presenter: Lars Krugel

Fabrication Timeline

Table 1: Timeline outlining the current and anticipated workflow and completion of design modifications and fabrication.

			Fe	eb 6,	202	23			Feb	1 3,	202	3			Feb 2	20, 2	2023	3		F	eb 2	27, 2	2023	1		N	/lar (5, 20	023			N	ſar	13, 2	2023	3	
			6	7 8	8 9	9 10	11	12 1	13 1	4 15	16	17	18 1	9 2	0 21	22	23	24 2	5 26	27	28	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16 1	7 1	8 19
	START	END	М	τV	V 1	F	s	S 1	M 1	гw	т	F	S	S N	4 T	w	т	FS	s	М	Т	w	Т	FS	s s	М	Т	w	Т	FS	s	М	Т	w	T	FS	s s
Order 9 V Battery and Holder	2/6/23	2/8/23																																			
Complete Circuitry Updates	2/6/23	2/13/23																																			
Create and Print New Solidworks	2/6/23	2/27/23																																			
Fix Coupler	2/13/23	2/22/23																																			
Create Keyboard for Multiple Rates	2/13/23	3/13/23																																			
Copy Circuitry to PCB	2/19/23	3/6/23																																			

Testing and Results

- Feedback system calibration testing (n = 3)
- Force detection testing
 - Average error = $1.70 \pm 1.52\%$
 - **FSR** error = $10.31 \pm 5.61\%$
 - p-value = 4.45×10^{-5}
- Cell viability testing (n = 5)
 - \circ ANOVA p-value = 0.41

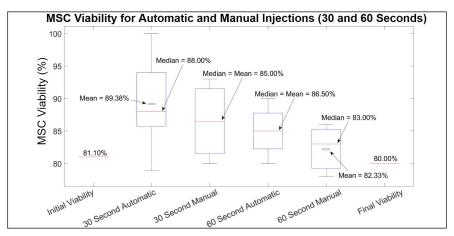


Figure 10: Boxplot comparing the viability of MSCs following automatic and manual 30 and 60 second injections.

Presenter: Parker Esswein

Testing and Results

- Catheter obstruction testing (n = 3)
 - \circ 30 second threshold = 3.47 ± 0.33 N
 - \circ 60 second threshold = 4.29 ± 0.07 N
- Bovine steak testing (n = 3)
 - 70 260 kPa stiffness
- *Ex vivo* cervine heart testing (n = 3)
 - \circ 30 second peak force = 9.01 ± 1.83 N
 - \circ 60 second peak force = 4.69 ± 0.14 N

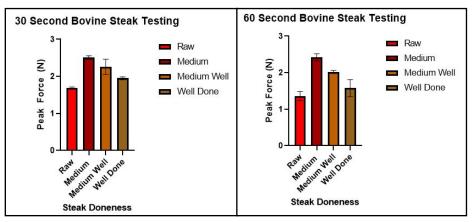


Figure 11: Bovine steak testing results for the peak force during 30 (left) and 60 (right) second injections into steaks with various stiffness levels.

Testing and Results

- Viscosity testing (n = 3)
 - Water
 - 30 second peak force = 1.44 ± 0.54 N
 - 60 second peak force = 1.12 ± 0.08 N
 - \circ Canola oil
 - 60 second peak force = 2.03 ± 0.05 N
 - Glycerol Experimental design complications
- Pressure sensor testing (n = 2)
 - \circ 30 second peak pressure = 429 mmHg
 - 2.21 ± 0.01 N
 - \circ 60 second peak pressure = 429 mmHg
 - 2.22 ± 0.06 N

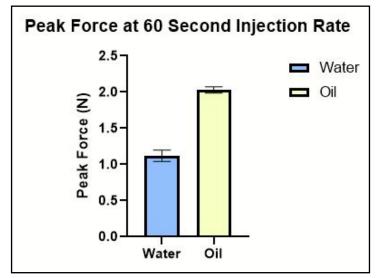


Figure 12: Peak 60 second injection forces for water and oil injectates.

Testing Plans

- FSG calibration testing
 - Using 9.00 V battery
 - 0.00 N 10.00 N range
- Further cell viability testing
 - Connect to catheter
- Additional viscosity, catheter obstruction, and bovine steak testing
 - Previous results were inconclusive
- Further pressure sensor testing
- Porcine *ex vivo* heart injection testing

Figure 13: *Ex vivo* cervine heart injection testing.

te university ISCONSIN

Testing Timeline

Table 2: Timeline outlining the target schedule for injector efficacy testing in order to validate the design.

			Feb 1	13, 2023	i	Feb 20, 2	2023	Feb	27, 2023		Mar	6, 2023		Mar	13, 20	23	Ma	r 20, 2	023		Mar 2	7, 2023		Apr	3, 202	3
			13 14	15 16 17 1	18 19 20	0 21 22 2	23 24 25 2	6 27 28	1 2 3	4 5	6 7	8 9 1	0 11 12	2 13 14	15 16	17 18	9 20 2	1 22 23	3 24 25	5 26 2	7 28 2	9 30 31	1 2	3 4	5 6	7 8 9
	START	END																								
FSG Calibration Testing	2/17/23	2/24/23																								
Cell Viability Testing	2/27/23	3/3/23																								
Pressure Sensor Testing	3/5/23	3/10/23																								
Viscosity Testing	3/5/23	3/10/23																								
Catheter Obstruction Testing	3/5/23	3/10/23																								
Bovine Steak Testing	3/20/23	3/26/23																								
Ex Vivo Heart Injection Testing	3/26/23	4/1/23																								

Budget

Table 3: Fall and Spring 2022 semester expenses.

	Total]	Budget	Exj	benses Spring 2022	
	\$3	000		\$163.64	
Expens 20	ses Fall 22	Remain Budge	U	Estimated Ex Spring 2(-
\$20	1.33	\$2635.	03	~\$127	,

Table 4: Predicted Spring 2023 expenses.

Item	Cost
9 V battery [Nuoxing Battery, 2023]	\$10
9 V battery holder [Lampvpath, 2023]	\$6
Printed circuitry [PCBWay, 2023]	~\$35
3D printed PLA parts	~\$55
Partially threaded rod [Small Parts, 2023]	\$11
New coupler [UxCell, 2023]	\$10
	Total: ~\$127

Presenter: Gab Zuern

E

Commercialization

- Packaging
 - Sterile bag to ensure sterility
- Documentation
 - User manual
 - System activation
 - Stop, start, and rate selection
 - Safety cautions and warnings
 - Dispose as biohazardous waste
 - Moving components
 - Risk of patient or operator harm with

Figure 14: FisherBrand Sterile Bags [Fishersci.com].

Acknowledgements

Dr. Amish Raval Dr. Eric Schmuck Dr. Aviad Hai

Figure 15: The team at the UW Health University Hospital

Presenter: Gab Zuern

References

[Prevention, 2019] Centers for Disease Control and Prevention, "Leading Causes of Death," Centers for Disease Control and Prevention, 2019.

https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm.

[Rheault-Henry et al., 2021] Rheault-Henry, M., White, I., Grover, D., & Atoui, R. (2021). Stem cell therapy for heart failure: Medical breakthrough, or dead end?. World journal of stem cells, 13(4), 236–259. https://doi.org/10.4252/wjsc.v13.i4.236

[Health.Harvard.edu] Harvard Health Publishing, "Stem cells to repair heart damage? Not so fast - Harvard Health," Harvard Health, 2018.

https://www.health.harvard.edu/heart-health/stem-cells-to-repair-heart-damage-not-so-fast.

[Hmadcha et al., 2020] A. Hmadcha, A. Martin-Montalvo, B. R. Gauthier, B. Soria, and V. Capilla-Gonzalez, "Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy," Frontiers in Bioengineering and Biotechnology, vol. 8, no. 43, Feb. 2020, doi: 10.3389/fbioe.2020.00043.

[Boyle et al., 2010] A. J. Boyle, I. K. McNiece, and J. M. Hare, "Mesenchymal Stem Cell Therapy for Cardiac Repair," Methods in Molecular Biology, vol. 660, pp. 65–84, 2010, doi: 10.1007/978-1-60761-705-1_5.

[White, 2016] M. H. Amer, F. R. A. J. Rose, L. J. White, and K. M. Shakesheff, "A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of Mesenchymal Stem Cells Using Narrow-Bore Needles," Stem Cells Translational Medicine, vol. 5, no. 3, pp. 366–378, Mar. 2016, doi: 10.5966/sctm.2015-0208. [ncbi.nlm.nih.gov] Michler, Robert E. "Stem cell therapy for heart failure." Methodist DeBakey cardiovascular journal vol. 9,4 (2013): 187-94. doi:10.14797/mdcj-9-4-187 [Wilburn, 2020] "Baxter Infus or Syringe Pump ABC 4100 Trade in Program." Wilburn Medical Equipment and Supplies,

[whoun, 2020] Baxter mus of Symiger ump ADC 4100 made in Hogram. whoun Medical Equipme

https://wilburnmedicalusa.com/baxter-infus-or-syringe-pump-abc-4100-trade-in-program/.

[DeVries, 1988] J. H. DeVries and R. J. VanPopering, "Pressure sensing syringe," US4759750A, Jul. 26, 1988 Accessed: Oct. 03, 2022. [Online]. Available: https://patents.google.com/patent/US4759750A/en

[Raval et al., 2021] A. N. Raval et al., "Point of care, Bone Marrow Mononuclear Cell Therapy in Ischemic Heart Failure Patients Personalized for Cell potency: 12-month Feasibility Results from CardiAMP Heart Failure roll-in Cohort," International Journal of Cardiology, vol. 326, pp. 131–138, Mar. 2021, doi: 10.1016/j.ijcard.2020.10.043. [Doumit et al., 2016] A. Vo, M. Doumit, and G. Rockwell, "The Biomechanics and Optimization of the Needle-Syringe System for Injecting Triamcinolone Acetonide into Keloids," Journal of Medical Engineering, vol. 2016, 2016, doi: 10.1155/2016/5162394.

References

[Raval, 2022] Dr. A. Raval, "Manufacturing cost of final automatic injection system product," Jan. 2022.

[Nuoxing Battery, 2023] Nuoxing Battery, "Tsrwuilly 9V Battery," Amazon, 2023. [Online]. Available:

https://www.amazon.com/Tsrwuily-9V-Batteries-Alkaline-Battery/dp/B0BL9ZRBDF/ref=sr_1_3_sspa?crid=3K19QUF87F0DL&keywords=9%2BV%2Bbattery&qid=167586922 3&sprefix=9%2Bv%2Bbattery%2Caps%2C164&sr=8-3-spons&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExNU5YWEVaV1hIUzhXJmVuY3J5cHRIZElkPUEwNjYxNDcyM zZTRkM0QUtPRE0wUCZlbmNyeXB0ZWRBZElkPUEwNzc1OTc5MkJKQzg5WUZNUjAzQyZ3aWRnZXROYW1IPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb0 5vdExvZ0NsaWNrPXRydWU&th=1

[LampvPath, 2023] LampvPath, "9V Battery Holder with Switch," Amazon, 2023. [Online]. Available:

 $https://www.amazon.com/LAMPVPATH-Pack-Battery-Holder-Switch/dp/B07T83B4SW/ref=sr_1_3?crid=6AY2GHVQM6CJ\&keywords=9+V+battery+holder+with+wires\&qid=1675869295\&sprefix=9v+battery+holder+with+wires%2Caps%2C130\&sr=8-3$

[PCBWay, 2023] "SMT PCB Assembly - Online PCB Quote - Full feature custom PCB prototype service at low cost - PCBWay," *www.pcbway.com*, 2023. [Online]. Available: https://www.pcbway.com/quotesmt.aspx?txtBoardNumq1=20.

[Small Parts, 2023] Small Parts, "Carbon Steel Stud Black Oxide Threaded Rod 200 mm Length," Amazon, 2023. [Online]. Available:

 $https://www.amazon.com/Threaded-Equally-M8-1-25-Threads-Lengths/dp/B003MW0GCA/ref=sr_1_2?crid=1SUXSI20C4VTD\&keywords=partially+threaded+rod&qid=1675869793\&sprefix=partially+threaded+rod%2Caps%2C152\&sr=8-2$

[UxCell, 2023] UxCell, "8 mm Bore Rigid Coupling Set," Amazon, 2023. [Online]. Available:

 $https://www.amazon.com/uxcell-Coupling-L22xD14-Coupler-Connector/dp/B07P5YZKY5/ref=sr_1_5?crid=CA1HTDRFR7F3\&keywords=coupler+for+arduino+motor&qid=1675869864\&sprefix=coupler+for+arduino+moto%2Caps%2C175\&sr=8-5$

[Fishersci.com] F. Scientific, "Fisherbrand Sterile Sampling Bags with Flat-Wire Closures - Environmental Samplers, General Purpose Sample Bags," www.fishersci.com, 2023. https://www.fishersci.com/shop/products/fisherbrand-sterile-sampling-bags-flat-wire-closures-16/p-32393

Thank You!

