

Department of Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Neonatal 22-23-Week Premature Infant Simulation Mannequin

02/24/2023 Advisor: Dr. Kristyn Masters Client: Dr. Timothy Elgin

The Team

Leader: Loukia Agoudemos Communicator: Sophia Finn BWIG: Charlie Fisher BSAC: Abbie Schaefer BPAG: Tanishka Sheth

Figure 1: Team photo From left to right: Charlie, Abbie, Loukia, Sophia Not pictured: Tanishka

Client Information

- Dr. Timothy Elgin, DO
- Currently works in the department of neonatology and Newborn Nursery at the UW Department of Pediatrics.

Figure 2: Image of the client

Problem Statement

- There are currently no 22-23 week neonatal simulation mannequins on the market, though it is vital for medical professionals to practice the skills needed to resuscitate an infant at this age.
- Must be able to be intubated, support central umbilical line placement, and include IV access.
- Including a chest cavity and rib structure that allows for additional training in thoracentesis and pericardiocentesis would be ideal.

Figure 3: Infant born at 23 Weeks [1]

Background & Prior Work

- 22-23 Week Premature Infants
 - Approximately 8 inches long
 - Weigh between 0.9-1.1 lbs
 - Skin is gelatinous, sticky, and can tear easily
 - The survival rate of infants at this stage is extremely variable [2]
- Last Semester's Model
 - PDMS used for skin model did not fully cure when casted into the mold
 - Needs a more robust chest cavity and airway for accurate intubation and structure
 - Needs limbs

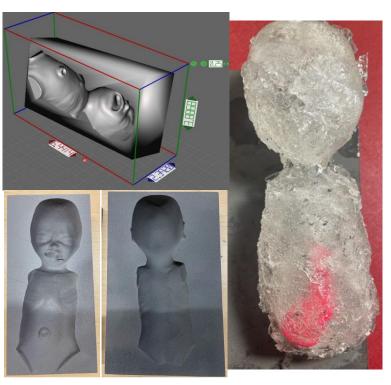


Figure 4: Last Semester's Model and Mold

Competing Designs

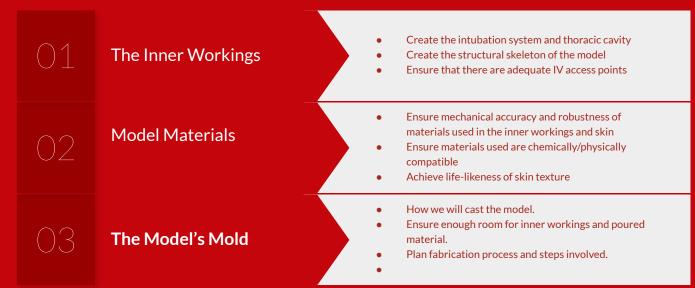
- Trucorp TruBaby X [3]
 - 5 month old infant mannequin
 - Notable feature:
 - Fluid system
- Universal Medical C.H.A.R.L.I.E. [4]
 - Resembles an infant at birth
 - Notable feature:
 - Electronics
- Laerdal Premature Anne
 - 25-week premature infant mannequin
 - Closest to the goal of our project
 - Improvements to be made:
 - Size
 - Skin

Figure 5: Premature Anne [5]

Summary of PDS

Client Requirements:

- 1. Length < 30.5 cm
- 2. Ability to practice medical procedures
- 3. Weight around 400-500 grams
- 4. Expandable lungs


Design Requirements:

- 1. Life in service : 3-5 years
- 2. Features must resemble that of a 22-23 week premature infant
- 3. Needs to be reproducible (both in products used and cost)
- 4. No discomfort to the person using the mannequin

Focus Areas of the Project

The Inner Workings Ideas

- Intubation and Shell 1. Model
- PLA printed chest and ٠ belly cavity
- Infant-sized cpr bag for . "lungs"
- Trachea model with silicone mouth & esophagus
- Previously used by First . **Breath & Micro Mike** teams

2. Balloon Lungs

- Breathing tube with a T-connector to mimic airways
- Two balloons serving as . lungs
- Absence mannequin's "skeleton"

Tubing

Balloons

Abdomin Length = 104 mm

Total Length = 177 mm

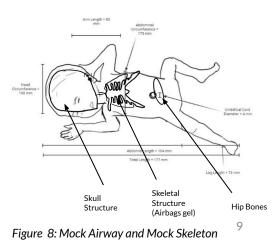
Figure 7: Balloon Lungs

Biomedical Engineering

UNIVERSITY OF WISCONSIN-MADISON

Department of

Umbillical Cord Diameter = 4 mm


Leg Length = 73 mm

Arm Length = 85

Head

3. Mock Airway and Mock Skeleton

- Includes a 3D printed skull and skeleton as the interior structure
 - Made of an elastic 0 plastic-ie polyurethane
- Accurately sized lung-air bags for rise and fall of lungs

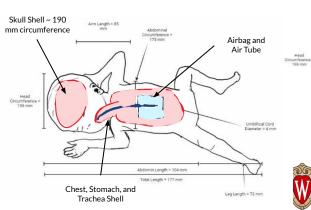


Figure 6: Intubation and Shell Model

Design Matrix of the Inner Workings

	Design 1: Intubation and Shell	Design 2: Balloon Lungs	Design 3: Mock airway and skeleton
Feedback Mechanism/ Realism (25)	4/5 (20)	4/5 (20)	5/5 (25)
Usability(25)	4/5 (20)	4/5 (20)	5/5 (25)
Cost (20)	3/5 (12)	5/5 (20)	2/5 (8)
Durability (15)	3/5 (9)	3/5 (9)	4/5 (12)
Feasibility/ Reproducibility (15)	3/5 (9)	5/5 (15)	2/5 (6)
Total (100)	70	84	76

Table 1: Design Matrix showing the three intubation options that can be used in the final design. Green highlighting shows the winner in each category

Model Materials

- 1. PDMS Coating on Ballistics Gel
 - Base skin layer made of thicker ballistics gel
 - Layer of PDMS cured on top for more realistic skin texture
 - Allows for stiffer chest area but also ideal skin texture

- 2. PDMS Only
 - PDMS cured in layers on top of each other
 - Material left in cavities that can be easily removed after curing process

- 3. Sleeve Coating
- Base of baby made of a harder material
- Areas necessary for different procedures can have an interchangable sleeve made of a softer skin like material

Criteria (Weight):

- Texture(25)
- Usability(25)
- Cost(25)
- Durability(15)
- Realism(5)
- Feasibility/Reproducibility (5)

Design Matrix of the Model's Materials

	Design 1:	Design 2:	Design 3:
	PDMS Coating on Ballistics Gel	PDMS Only	Sleeve Coating -Thicker silicone sleeve on top of hard plastic body
Texture(25)	5/5 (25)	3/5 (15)	4/5 (20)
Usability(25)	5/5 (25)	3/5 (15)	4/5 (20)
Cost(25)	4/5 (20)	5/5 (25)	2/5 (10)
Durability(15)	4/5 (12)	2/5 (6)	3/5 (9)
Realism(5)	4/5 (4)	2/5 (2)	5/5 (5)
Feasibility/ Reproducibility (5)	4/5 (4)	5/5 (5)	2/5 (2)
Total (100)	90	68	66

Table 2: Design Matrix showing the three skin materials that can be used in the final design. Green highlighting shows the winner in each category.

The Model's Mold Design Ideas

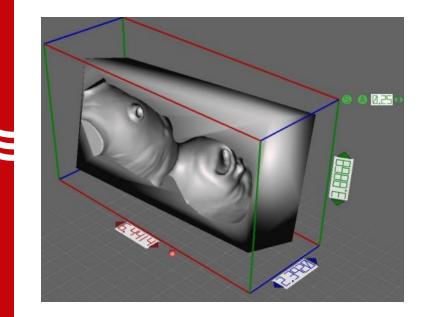


Figure 9: 3D model of mold

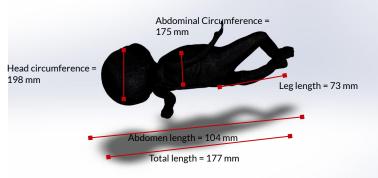
- 1. PVA Casted Mold
- 2. Tough PLA
- 3. Nylon Mold

Criteria (Weight):

- Heat Resistance (25)
- Cost (20)
- Durability (20)
- Detail Capturing (20)
- Feasibility (10)
- Ease of Use (5)

Design Matrix of The Model's Mold

	Design 1:	Design 2:	Design 3:
	PVA Casted Mold	Tough PLA	Nylon Mold
Heat Resistance (25)	3/5 (15)	4/5 (20)	5/5 (25)
Cost (20)	2/5 (8)	5/5 (20)	4/5 (16)
Durability (20)	4/5 (16)	5/5 (20)	4/5 (16)
Detail Capturing (20)	4/5 (16)	5/5 (20)	4/5 (16)
Feasibility (10)	3/5 (6)	4/5 (8)	1/5 (2)
Ease of Use (5)	3/5 (3)	4/5 (4)	1/5 (1)
Total (100)	64	92	76


Table 3: Design Matrix showing the three materials that can be used in the final design. Green highlighting

shows the winner in each category.

Chosen Preliminary Design

- Neonatal Manikin
 - Ballistics gel with a PDMS coating to model the skin tissue
 - The model will include a cavity for the trachea and chest cavity
 - Snowman shape made from PLA will be placed inside during curing and removed at the end
 - The model will also include limbs for IV access

Mold

• 3D printed from Ultimaker Tough PLA

Figure 10: 3D model of the 22-23 week neonatal mannequin

Future Work

This semester:

- Creating new molds using selected material
 - Addition of mold for limbs
- Fabricating intubation materials
- Fabricating a usable prototype
- Embodying Accuracy
- Usability testing

Beyond this semester:

- Creating a High Fidelity Model
 - Vein system
 - Pulse
 - Different thoracic cavity movements
 - Programming software
 - Pressure sensor
 - Lights
 - Fluid system

Acknowledgements

We would like to thank:

- Dr. Elgin
- Dr. Masters
- Dr. Puccinelli
- BME Department

References

[1] "A miracle preemie: Yishan's story," *Children's Minnesota*, 25-Nov-2020. [Online]. Available: https://www.childrensmn.org/2020/11/12/extremely-premature-infant-miracle-baby/. [Accessed: 05-Oct-2022].

[2] A. Cavolo, B. Dierckx de Casterlé, G. Naulaers, and C. Gastmans, "Physicians' Attitudes on Resuscitation of Extremely Premature Infants: A Systematic Review," Pediatrics, vol. 143, no. 6, p. e20183972, Jun. 2019, doi: 10.1542/peds.2018-3972.

[3] "Trubaby x: Infant CPR manikin: Pediatric manikin," *Trucorp*, 16-Aug-2022. [Online]. Available: https://trucorp.com/product/trubabyx/. [Accessed: 05-Oct-2022].

[4]"Life/form C.H.A.R.L.I.E. neonatal resuscitation simulator without interactive ECG Simulator," *Universal Medical*. [Online]. Available: https://www.universalmedicalinc.com/life-form-c-h-a-r-l-i-e-neonatal-resuscitation-simulator-without-interactive-ecg -simulator.html. [Accessed: 05-Oct-2022].

[5] "Premature anne," *Laerdal Medical*. [Online]. Available: https://laerdal.com/us/products/simulation-training/obstetrics-pediatrics/premature-anne/. [Accessed: 05-Oct-2022].

Questions?

