Tissue Model of the Epithelial Mesenchymal Trophic Unit
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PROBLEM STATEMENT

Lack of scaffolds that model the lung ECM and its changes due to cell

injury from diseases (like COPD & pulmonary fibrosis)

Dr. Brasier of the UWSMPH needs such a scaffold

o0 Provide him with a tool to study lung inflammation and disease

O WVould aid in translational research such as therapies that target
lung tissue changes induced by diseased state

o Scaffold must be bioprinted

SMmaLL AlIrway ECM

® The extracellular matrix (ECM) is a network of proteins
and macromolecules [1]
o0 Provides support and mechanical/biochemical cues to cells
® The epithelial mesenchymal trophic unit (EMTU) is made of [1]:
o Lung epithelial cells, surrounding ECM, subepithelial fibroblasts
Chronic lung diseases injure lung epithelium [2]
o Inflammatory response increases fibroblast activity
o Fibroblasts produce more proteins such as collagen and fibronectin
0 The mechanical stiffness of the ECM increases
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Figure |:Schematic of EMTU response to injury [2]
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CLINICAL SIGNIFICANCE

COPD is 3rd leading cause of death in the world [3]
In the US, over 120,000 people die yearly of COPD [4]

While not curable, current COPD treatments include:

o Bronchodilators (inhalers) which relax and open the airways

o0 Oral steroid medications

O Pulmonary rehabilitation

o Surgery (severe cases) [3]

Tissue model would contribute to more thorough understanding of
diseases and development of individualized treatments
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Figure 2: Graphic depicting the effects of COPD on the lungs [5]

DESIGN CRITERIA

Tunable mechanical stiffness

o Healthy tissue: 2-5 kPa

o Fibrotic tissue: 216.5 kPa

Mimics biochemical properties of native lung ECM

o Cell adhesive and enzymatically degradable for remodelling

Support co-culture of fibroblasts and human small airway epithelial cells (hRSAECs)

<|2 mm diameter to be compatible with an air-liquid interface (ALI)

FiNAL DESIGN

e Biomaterial: Gelatin Methacryloyl
(GelMA)
o Pipette-based hydrogels

m 50% degree of
functionalization

m Cylindrical molds
e 9 mm diameter

m 365 nm UV light
® 5 min for healthy stiffness

Figure 3: Bioprinted

: . : . GelMA hydrogels
e |5 min for fibrotic stiffness yaros

o Bioprinted hydrogels
m CELLINK GelMA bioink w/ 0.25% LAP
photoinitiator [6]

m 3D cylindrical structure

Heating Temperature: 37 °C ) 9 9
Equilibrium Time: 30 min m
Infill Density: 52% Lo = te
Printing Temperature: 26.1 °C i -
Extrusion Pressure: 40 kPa f

405 nm UV light

e |0 mm diameter x 2 mm thickness — T T T R
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® 2 s for healthy stiffness
e |3 s for fibrotic stiffness

RHEOMETRY

® Mechanical stiffness of bioprinted

Figure 4: CELLINK BioX
3D Bioprinter [6]

hydrogels assessed via converting Condition (UV

rheometry-obtained shear moduli (G) time)

Stiffness (kPa)

to Young’s moduli (E) Healthy (2 s)

4.82 + 0.6

o E=2G(l+v)

m v = 0.5 for hydrogels [7] Semi-Stiff (10 s)

12.31 £ 2.8

Fibrotic (13 s)

18.52 + 3.6

® Frequency-sweep
o Strain control - 1%

Figure 5: Gels were swelled in cell

culture media for 24 hr prior to testing

o 0.1 Hz- 10 Hz

CELL VIABILITY

e Encapsulated fibroblasts in pipette-based hydrogels to assess GelMA’s
ability to support cells

® Bright-field images show fibroblastic morphology

e LIVE/DEAD™ staining and imaging of cell-laden gels at four time points

® % cell viability after | week:
o Healthy stiffness: 86.7 + 6.7%

o Fibrotic stiffness: 85.1 + 7.5%

Ig{f Stiffn N Healthy Stiffness
Y SA { (day 3)

Healthy Stiffness
(day #)

Fibrotic Stiffness
(day 7)

Figure 6: Representative bright-field and
fluorescence images of cell-laden hydrogels
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Figure 7: Plot of % cell viability for healthy and fibrotic stiffness hydrogels over time

FUTURE WORK

® hSAEC seeding on top of hydrogels to evaluate cell adherence
e Fibroblast/hSAEC co-culture (w/ cell viability testing)
® [ncorporation of fibroblasts into bioink for bioprinting
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