

CRISPRi Screening in Cancer Spheroids

Team Members: Althys Cao, Ana Martinez, Jayson O'Halloran, Emily Rhine, and Julia Salita Clients: Ms. Carley Schwartz and Dr. Gaelen Hess Advisor: Dr. Paul Campagnola Date: 2/7/2025

Client Description

- Dr. Gaelen Hess
 - Hess Laboratory within the Wisconsin Institutes for Medical Research (WIMR)
 - Assistant professor in the Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine [1].
 - High-throughput genomics to investigate DNA repair and pathogenic effectors [1].
- Ms. Carley Schwartz
 - Lab manager and research intern at Hess Lab

Figure 1: a) Dr. Gaelen Hess [1], b) Ms. Carley Schwartz [2].

Problem Statement

• Current Limitations:

Existing CRISPRi screening in 2D monolayers fail to identify factors that regulate genome stability and DNA damage in the 3D environment of tumors

• 3D Models:

Using a 3D spheroid model the tumor microenvironment can be semi-replicated to better assess gene function and cellular responses

• Project Objective:

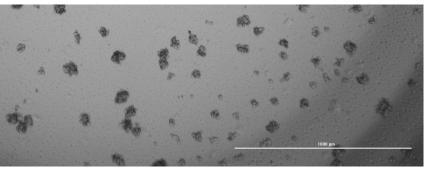
The project aims to identify tumor-specific factors that regulate genome stability using CRISPRi screening in optimized 3D model to access DNA damage

Motivation & Impact

Motivation

- 2.2 million new cancer cases and 736,790 deaths reported in the United States in 2024 [3]
- 2D monolayer fails to accurately represent the 3D tumor microenvironment [4]
 - Increased cell-cell and cell-matrix interactions
 - Better recapitulation oxygen and nutrient diffusion compared to 2D
- 3D CRISPRi screening can help identify sources of DNA damage and regulatory genes not found with 2D cultures

Impact


- Early cancer detection
- 2D and 3D genetic differences on a cellular level
- Efficacy of cancer treatment

Previous Work

Cell Line Selection: A549 [5]

- Non-small cell lung cancer (NSCLC)
- Adenocarcinoma
- Adherent
- 50 µm cell diameter
- Doubling time: 22 hours

Figure 2: Brightfield image of spheroids 3 days after seeding at density of 75k cells/cm²

Department of Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Spheroid Formation Protocol:

PolyHEMA Plates:

- Stock: 1.3 g poly-HEMA + 33 mL 99% ethanol
- 50 µL of PolyHEMA stock per well in 96-well flat-bottom plate

Spheroid Seeding:

- Seed cells in 320 µL of serum-free DMEM with 0.75% methylcellulose/cm²
- Ideal density: 50k -75k cells/cm²

Spheroid Imaging:

- Dissociated cells with Accutase (150 µL/well) after 3-4 days [6]
- BioTek and Cytation to image cells at 5 z-stack levels per well

Project Design Specifications

1

2

Optimization:

Perform a cell viability assay to analyze additional testing to determine optimal cell seeding density for best spheroid formation results

Optimization 2:

Run testing on differing methylcellulose concentrations to optimize spheroid formation.

3

BSL-2 Safety:

Handling infectious agents must be conducted in BSCs by trained personnel in a restricted laboratory

4	5	6
Staining: Develop a protocol to stain for γH2AX: an indicator of DNA damage by DSB [7]	Screen: Perform a high-throughput genome-wide CRISPR screen.	Budget: \$1000

Biomedical Engineering

Timeline

- Spheroid repeat (2/14)
 - \circ $\,$ Cell density 50k cells/cm^2: 0.75%, 1%, and 1.25% Methylcellulose/cm^2 $\,$
 - Cell density 70k cells/cm²: 0.75%, 1%, and 1.25% Methylcellulose/cm²
- qPCR for SOX2 on spheroids with ideal methylcellulose and ideal density (2/21)
 - SOX2 contributes to spheroid formation of A549 [8]
 - Choose and order primer
- Hess lab Gamma-H2AX stain #1 (2/28)
 - 2D without and with drug (etoposide) treatment of A549 Line
 - 3D without and with drug treatment of A549 Line
- Hess lab Gamma-H2AX stain #2 (TBD)
 - Tweak protocol after stain #1
 - Same experimental groups

Budget

- Spheroid cost estimate for one trial was \$92.62
- Team will be doing this three times: \$277.86
- Many of the materials used are provided by the Hess Lab: Flasks, A549 cell line, DMEM, FBS, Trypsin, etc
- Hess Lab is providing Etoposide for treating spheroids to prepare for γ H2AX stain
- Primer for qPCR estimated at \$109.00 for 0.5 mL GAPDH [5]

Final Prototype

- 1. Spheroid formation protocol: seeding density and methylcellulose concentration optimized
- 2. γ -H2AX staining protocol: optimized for 3D
- 3. Scale up spheroid formation (50 million cells) for <u>client</u> to proceed with CRISPRi screening on A549 spheroids for tumor specific factors

Thank you to Dr. Paul Campagnola, Ms. Carley Schwartz, Dr. Gaelen Hess, and Hess Lab personnel for all of their help on this project!

References

[1] "Hess, Gaelen," Integrated Program in Biochemistry. Accessed: Oct. 05, 2024. [Online]. Available: https://ipib.wisc.edu/staff/hess-gaelen/

[2] "People," The Hess Lab @ UW. Accessed: Jan. 24, 2025. [Online]. Available: https://www.thehesslab.org/people

[3] "Cancer Facts & Figures 2024." Accessed: Dec. 12, 2024. [Online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2024-cancer-facts-figures.html

[4] "2D vs 3D cell culture | Learning Center," 2D vs 3D cell culture | Learning Center | UPM Biomedicals. Accessed: Oct. 03, 2024. [Online]. Available: https://www.upmbiomedicals.com/resource-center/learning-center/what-is-3d-cell-culture/2d-versus-3d-cell-culture/

[5] "A549 - CCL-185 | ATCC." Accessed: [Online]. Available: https://www.atcc.org/products/ccl-185

[6] "GAPDH primer," Novus Biologicals, 2025.

https://www.novusbio.com/products/gapdh-primer_nbp1-71650?srsltid=AfmBOoomNZhzD0tr-UtfhYgyXTL1Jj5I6EC309CpwJo51bbFjdWigMof (accessed Feb. 07, 2025).

[7] M. Selby et al., "3D Models of the NCI60 Cell Lines for Screening Oncology Compounds," SLAS Discov., vol. 22, no. 5, pp. 473–483, Jun. 2017, doi: 10.1177/2472555217697434.

[8] C. Choe, H. Kim, S. Min, S. Park, J. Seo, and S. Roh, "SOX2, a stemness gene, induces progression of NSCLC A549 cells toward anchorage-independent growth and chemoresistance to vinblastine," OncoTargets and Therapy, vol. Volume 11, pp. 6197–6207, Sep. 2018, doi: https://doi.org/10.2147/ott.s175810.

