
Stabilizer Device for Intracardiac Echocardiography (ICE)

to Assist Structural Heart Interventional Procedures

BME 402 Sara Morehouse, Max Aziz, Noah Hamrin, Kaden Kafar

OUTLINE

- Problem, Background, & Design Constraints
- Broader Impact
- Current Design/Prototype
- Previous Testing
- Fabrication Timeline
- Testing Timeline
- Marketing
- Budget
- Journal
- References
- Acknowledgements & Questions

PROBLEM STATEMENT

- Dr. Amish Raval –
 client/Interventional Cardiologist
- ICE Catheter instability
- Current method is wet towel or have a tech hold it
- Device must hold all types of ICE catheters and adjust it slightly

Figure 1: ICE Catheter [1]

BACKGROUND

Figure 2: 4D ICE Catheter insertion [2]

- Imaging Catheter
- Small, precise and clear images
- Femoral vein to inferior vena cava to see either right or left atria or ventricles [3]
- Patient is awake but local anesthesia
- Process efficiency

DESIGN SPECIFICATIONS

- Adjustable support fixture for ICE catheter
- Allow for use of ICE handle controls
- Adjustable height: 22.8 cm to 34.3 cm
- Material must withstand ethylene oxide, gas, or heat sterilization [6]
- Compatible with many models and brands of ICE catheter
- Must be able to keep the catheter secured from load of 2 N
- Manufacturing costs < \$300

COMPETING DESIGNS

Figure 3: Abbott MitraClip Catheter with Stabilizer [4]

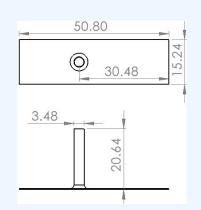
- Catheter held in place with screws
- Non-adjustable angled placement

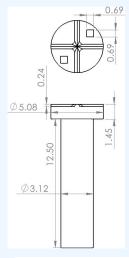
Figure 4: Edwards EVOQUE Stabilizer, base, and plate [5]

• 3 components

CURRENT DESIGN

Polylactic Acid (PLA) 3D printed prototype


Height adjustable via pole clamp


Top part magnetically secures to middle

part across

sterile drape

 Straps were not included on this prototype

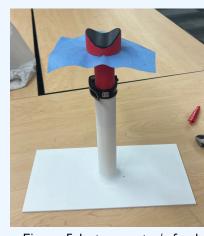


Figure 5: last semester's final prototype

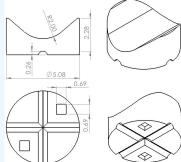
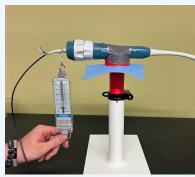


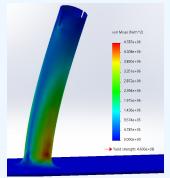
Figure 6: Solidworks drawings of top part (right), middle part (top), and base (left)

PREVIOUS TESTING

Catheter Saddle Dislodging Force Testing:

- Bending, torsional, & tensile forces
- Device vs wet towel (current method)
- p-value < 0.001 for torsional & tensile loading


Weld Stress Concentration Analysis:


- Transverse 38 N load applied to top of shaft
- ASTM 4130 Steel (annealed) $[S_Y = 460 \text{ MPa}, S_U = 560 \text{ MPa}]$
- Highest stress: 4.8 MPa
- FOS: 96.3

Surgical Drape Tensile Testing:

• Load required to tear drape: 100.23 N

	Young's	Max Load	Max
	Modulus (MPa)	(N)	Strain
Average	7.65 ± 0.95	100.23 ± 8.33	0.55 ± 0.07

FABRICATION TIMELINE

2 3

Design

- Straps
- Magnetic modules for various heights

Plan

- Updated 3D model
- CNC & welding protocol

Fabricate

- CNC & welding
- Stainless steel

TESTING TIMELINE

2 3

Magnet Validation

Ensure
 compatibility
 between magnets
 and
 echocardiography

Revised Force Testing

Updated prototype

User Feedback

- Direct assessment of design criteria
- Physician & cath lab personnel

MARKETING & PACKAGING

- Corrugated box
- PE closed foam inserts
- Individually wrapped components
- Labeled and Documented
- Top component sterile

Figure 7: Medical Device Packaging

BUDGET

• Budget: \$1000

Manufacturing Budget: \$300

• Product Cost: \$143.21

Item	Total Cost	Fraction	Cost
Quick release clamp	\$8.99	100.00%	\$8.99
(2) 1/4x1/4x1/4 magnets	\$5.14	100.00%	\$5.14
(2) 1/4x3/4x1/4 magnets	\$13.52	100.00%	\$13.52
Rubber straps	\$9.99	4.17%	\$0.42
Adhesive rubber	\$12.98	1.67%	\$0.22
1-3/8" OD shaft - 1ft long	\$29.37	70.83%	\$20.80
Sheet metal 4130 easy-to-weld steel 6"x36"	\$63.80	55.56%	\$35.45
4130 steel rod 2"x1ft	\$88.65	58.33%	\$51.71
3D print	\$6.97	100.00%	\$6.97
Total			\$143.21

Table 1: Costs Spreadsheet

JOURNAL

- Biomedical Materials and Devices
 - Published by Springer
 - Sections
 - Abstract
 - Introduction
 - Methods
 - Results
 - Discussion
- Manufacturing innovations and clinical translations of devices
- Recommended by Dr. Raval

REFERENCES

- [1] "Ultrasound intra-cardiac echo (ICE)," DAIC, https://www.dicardiology.com/channel/ultrasound-intra-cardiac-echo-ice (Accessed Oct. 1, 2024).
- [2] "AcuNav Lumos 4D ice catheter," AcuNav Lumos 4D ICE Catheter Siemens Healthineers USA, https://www.siemens-healthineers.com/en-us/ultrasound/cardiovascular/acunav-lumos-catheter (Accessed Oct. 1, 2024).
- J. Garg et al., "Intracardiac echocardiography from coronary sinus," Journal of cardiovascular electrophysiology, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828028/#:~:text=2%20%2C%203-,Standard%20ICE%20imaging%20includes %20placing%20the%20catheter%20in%20the%20right,%2C%20via%20the%20transseptal%20approach). (Accessed Oct. 1, 2024).
- [4] Abbott, "MitraClip Procedure | Mitral Regurgitation Treatment," MitraClip, 2019. https://mitraclip.com/. (Accessed Oct. 1, 2024).
- [5] "EVOQUE Tricuspid Valve Replacement," Edwards.com, 2014. https://www.edwards.com/healthcare-professionals/products-services/evoque-tricuspid-valve-replacement-system. (Accessed Oct. 1, 2024).
- [6] Z. B. Jildeh, P. H. Wagner, and M. J. Schöning, "Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020," physica status solidi (a), vol. 218, no. 13, p. 2000732, Mar. 2021, doi: https://doi.org/10.1002/pssa.202000732. (Accessed Oct. 1, 2024).