February 8th, 2024

Smart Walker

Advisor Dr. Amit Nimunkar Client Dan Kutschera The Team Nolan BlomWillis (Communicator) Eva Schiltz (BSAC) Jacob Parsons (BPAG) James Waldenberger (BWIG) Owen Kolnik (Leader)

Client Description and Problem Statement

Dan Kutschera

- Physical Therapist
- Acute Stroke clinic in Madison, WI

Problem Statement

Our team must design a device that works in conjunction with a standard walker that will measure the speed and distance the patient walks and the pressure applied to the walker.

Figure 1. Client Dan Kutschera [1]

Background

- Currently there is no way to have real-time analysis of a patient's progress with a walker.
- Rehabilitation is shifting more to a data driven approach to rehab.
- Current smart walkers are very expensive.

Figure 2. Rehab with a Walker [2]

Competing Solutions

Walking Distance Measuring Device

- No pressure readings
- Not a lot of patient information included
- Just a patent currently

Camino Smart Walker

- Built in boost and brakes
- \$2,500
- Not a clinical walker

Figure 3. Walking Distance Measuring Device [3]

Figure 4. Camino Smart Walker [4]

Design Specifications

- Device must last 5 years without maintenance needed.
- Device will be used for a maximum of 10 patients a day and 5 trials per patient.
- It must run trials up to 100 meters in length.
- Must output measurements in pounds and miles per hour
- Components must be accurate within 5% of measured value.
- Must support the weight of the user (max of 140kg).

Accelerometer Review

- Used the ADXL345 accelerometer that would pick up acceleration values in the x, y, and z planes
- Varying sensitivities:
 - Higher sensitivities lead to it being more susceptible to error due to gravity
 - Lower sensitivities lead to a lack of deceleration readings
- A balance between the higher and lower sensitivities was not found: constant drift issues

Sensitivity	Average Velocity (m/s)	Standard Deviation (m/s)
+/- 2 g	0.097	0.11
+/- 4 g	0.037	0.006
+/- 8 g	0.053	0.046
+/- 16 g	0	0

Table 1. The average velocities measured by the accelerometer at varying sensitivities whilst still

Speed Sensor Alternatives

MPU 6050 Accelerometer

- 3 axis accelerometer with 3 axis gyroscope
- Pros
 - Integrated tech to Ο avoid effects from gravity
 - Have source code 0
- Cons
 - Potential drift issues 0

TO-92 Hall Effect

- Proximity based detection of magnets
- Pros
 - Very small, easily 0 integratable
 - Prior group's tech Ο
- Cons
 - Presence of other \cap magnetic fields
 - Potential accuracy 0 issues

TCRT5000 IR Sensor

- Use of IR transmitter and receiver that detects changes in reflections
- Light based rotary encoder
- Pros
 - Simple to set up Ο
 - Very precise and 0 accurate
- Cons
 - Potential sources of \bigcirc error due to ambient lighting

Power

- Battery
 - 12.6V lithium-ion battery with 24mAh of charge
 - Comes with protection circuitry, charging cable, and charging block
- Voltage Regulation
 - We weren't able to find a breakout board containing the three different voltage outputs that are needed
 - Individual 9V, 5V, and 3.3V step-down regulators
- Fabrication
 - Regulators will receive power directly from the battery, and connect in parallel to power the circuit
 - Everything will be located in the electrical housing box on the front of the walker

Figure 5. Lithium ion rechargeable battery pack for use in the Smart Walker [5]

Power Testing

- Charge length test
 - Run code to monitor and store time data until the walker shuts off
 - Last recorded time = Charge length for the Smart Walker
 - Multiple trials
- Charging speed test
 - Record time to go from fully depleted to fully charged battery while plugged in to the outlet
 - Multiple trials
- Heat of components test
 - Measure temperature on the surface of the step-down regulators until it stays the same between measurements
 - Gives upper-bound for the temperature of the regulating components
 - \circ Multiple trials for 9V, 5V, and 3.3V regulators
- Possible other tests

James

Load Cells - Previous Work

• Successes

- High accuracy (±1% of real value)
- Decent power efficiency (~16mA)

• Problems

- Noisy signal, so the average between multiple values was taken
- Not calibrated for final setup
- Using breadboard instead of PCB board
- Committing to a lead polarity means we could double the gain in the circuit for a more accurate reading \rightarrow Replace/alter level shifter

Load Cells

• Moving forwards

- Implement regulated voltage into load cell circuit
- Create PCB for all circuit components of the Smart Walker
- Integrate load cells into load cell holders on each leg of the walker
- Feed wires through the legs of the walker to their respective destinations
- Re-calibrate with all changes made

Load Cell Housing - Previous Work

Figure 6. Dimensioned SolidWorks assembly of housing chambers for the load cells

Figure 7. 3D printed loading cell housing prototype

Load Cell Housing

CAD Model

- ABS minimum flexural yield strength of 60.6 MPa means the factor of safety is 8 [6].
- The reduction of strength through 3D printing can be offset by using a high infill (80%).

Figure 8. Results from SolidWorks simulation of the load cell holder

Load Cell Housing With Walker

Figure 9. Current image of prototype featuring integration of load cell housing with walker

Load Cell Testing - Weight Measurement

• Method

- Measure weight of wooden board
- Rest board across walker rails
- Record weight registered by load cells
- Progressively add plates of known weight onto the wooden board, recording registered weight between each plate
- Compare actual weight to recorded weight

• PDS Criteria

- Must measure up to 140 kg of weight
- \circ Must be accurate within +/- 5% of applied weight

Load Cell Testing - Functionality

• Protocol

- Group members will take turns walking 10 meters each over a period of 30 minutes.
- The height of the walker will be measured and adjusted between trials
- \circ $\;$ The weight of the walker will be measured using a scale.
- Group members will make qualitative observations on functionality of the device: stability, comfort, ease of movement, etc.

• PDS Criteria

- Must not impede function of the walker
- Walker must weigh between 4.5 and 9 kgs
- Walker must be adjustable and have a height of between 0.8 and 1.1 m

Electrical Housing- CAD Design

Purpose

• Hold Power Supply and Sensor Circuitry.

Design Criteria

- Must not interfere with patient walking.
- Must protect circuitry.
- Must allow wires to exit housing.
- Must securely attach to walker.
- Must allow access to internal wiring.
- Must allow for walker folding.

DEPARTMENT OF

Biomedical Engineering

NIVERSITY OF WISCONSIN–MADISON

Electrical Housing - Design Dimension

Figure 11. Electrical Housing Dimensions.

Electrical Housing - FE Analysis

DISCLAIMER: Material is 3D printed anisotropic Polypropylene, HOWEVER material properties were sourced from Polypropylene separator testing (transversely Isotropic but not laser cured) [7].

Figure 12. FEM Mesh

Figure 13. FEM Z Normal Stress

Applied Load: (5x) Battery Weight & Housing Weight

Weakest Direction Yield Stress (Z): 17.55 MPa [8]

Distortion Energy Safety Factor (Z-Normal): ~ 35.7

Final Fabrication - Electrical Housing Assembly

Components

- Pipe Clamps (3x)
- Attachment Bolts and Nuts (3x)
- Heat Set Threaded Inserts and associated Screws (8x)
- Removable Doors (2x)
- Main Electrical Housing Body
- Velcro Strips
- Washers (3x)

Material

• Formlabs Tough 1500 Resin

Figure 14. Electrical Housing with all Components

Final Fabrication - Hardware Block Diagram

Figure 15. Hardware Block Diagram

Final Fabrication - Software Block Diagram

Figure 16. Software Block Diagram

Acknowledgments

Thank you to our advisor Dr. Nimunkar and our client Mr. Kutschera!

References

[1] Linkedin, https://www.linkedin.com/in/daniel-kutschera-239a8492/ (accessed Oct. 3, 2024)

[2] T. Olson, "Fisioterapeuta Assisting Woman With Walker In Rehab Center," Dreamstime, 2000.

https://es.dreamstime.com/foto-de-archivo-fisioterapeuta-assisting-woman-walker-rehab-center-image70407076 (accessed Oct. 02, 2024).

[3] "US7044361B2 - Walker Distance Measuring Device," Google Patents, https://patents.google.com/patent/US7044361B2/en (accessed Sep. 12, 2024).

[4] Camino Mobility, https://caminomobility.com/ (accessed Oct. 3, 2024).

[5] [1] "Amazon.com: KBT 12V 2400mAh Rechargeable Li-ion Battery, Bare Leads Wire Replacement Battery Pack with 12V Charger Compatible with 12V Devices RC Car, Boat, Robot, DIY, LED Light Strip, CCTV Camera : Health & Household." Accessed: Feb. 06, 2025. [Online]. Available:

https://www.amazon.com/KBT-1200mAh-Rechargeable-Replacement-Compatible/dp/B0C241NS29/ref=asc_df_B0C243MXMQ?mcid=dea 48368babc3c8f81704b14a90b61e6&hvocijid=10993238356879803904-B0C243MXMQ-&hvexpln=73&tag=hyprod-20&linkCode=df0&hvadid=7 21245378154&hvpos=&hvnetw=g&hvrand=10993238356879803904&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocph y=9018944&hvtargid=pla-2281435179058&th=1

[6] ABS material data sheet, http://teststandard.com/data_sheets/ABS_Data_sheet.pdf (accessed Dec. 5, 2024).

[7] K. K. Yang et al., "Experimental validation of 3D printed material behaviors and their influence on the structural topology design - computational mechanics," SpringerLink, https://link.springer.com/article/10.1007/s00466-018-1537-1 (accessed Feb. 6, 2025).
[8] G. Zhao, H. Xi, and J. Yang, "Transversely isotropic constitutive model of the polypropylene separator based on rich-hill elastoplastic constitutive theory," ASME Digital Collection,

https://asmedigitalcollection.asme.org/electrochemical/article/18/2/020911/1091642/Transversely-Isotropic-Constitutive-Model-of-th e (accessed Feb. 6, 2025)

