ICP Monitor

Client

Josh Medow

Advisor

Wally Block

Team Members

Erin Main – Co-leader Josh White – Co-leader Jessica Hause - BSAC Kenny Roggow - BWIG Adam Goon - Communicator

Outline

- Shunt Purpose and Function
- Project Inspiration
 - Failure & malfunctions
- Design Requirements
- Existing ICP Monitors
 - Medtronic & Radionics
- Power Supply
 - Design Alternatives
 - Design Matrix
- Transducer
 - Design Alternatives
 - Design Matrix
- Future Research & Calculations

(Josh Medow, MD)

Shunt Purpose and Function

- Regulation of pressure
- Hydrocephalus
- Drainage of cerebrospinal fluid
- Incidence rate of 1%

(http://www.cancerhelp.org.uk/cancer_i mages/brain-shunt.gif)

- Shunt failure rate
 - 50% failure rate in first 2-3 years
- Shunt malfunctions
 - Invasive diagnosis
 - Surgery & Shunt Tap
 - Noninvasive diagnosis
 - Physical Exam
 - MRI / CT Scan

(Joshua Medow, MD)

Design Requirements

- Noninvasive method to measure intracranial pressure
 - Effective power transmission across1.5 cm gap
 - Implanted pressure gauge transducer
 - Signal transmission & interpreted externally

(http://www.dkimages.com/discover/previews/832/20112875.JPG)

Specifications for ICP Monitor

- Performance Requirements
 - 5 Volts
 - Current < 100 mA
- Accuracy & Reliability
- Materials
 - Biocompatibility
 - MRI no ferrous materials
- Pressure ranges
 - Average: 10 15 mmHg
 - Gauge range: -3 30 mmHg

Existing ICP Monitors

- Medtronic Insite Monitor
 - Decent accuracy
 - Expensive
 - Large battery implanted in chest
 - Finite power supply

- Radionics TeleSensor
 - Indicate high & low pressure
 - Solenoid moved with changes in pressure

External Power Supply

- 3 Designs
 - Direct Hook-up
 - Battery
 - Solenoid
- Design Matrix

Design 1: Direct Hook-Up

(http://www.mathworks.com/matlabcentr al/files/647/head_big.gif)

Design 2: Battery

(http://www.bfawu.org/images/bakers-union-body.gif)

Design 3: Solenoid

(Josh Medow, MD)

Solenoid Basics

$$B_1 = \frac{\mu_0 (1 + \aleph) N_1 I_1}{L_1}$$

(http://library.thinkquest.org/16600/intermedia te/solenoid.gif)

- Magnetic field primarily within solenoid
- Proportional to:
 - Length
 - Number of windings
 - Core material
 - Current

Faraday's Law and Lenz's Law

$$E_2 = -N_2 A_2 \frac{dB_1}{dt}$$

(http://sol.sci.uop.edu/~jfalward/electromagneticindu ction/barcoilgalvonometer.jpg)

- Faraday:
 - Secondary Voltage
 - Change in flux
 - Changing magnetic field
- Lenz:
 - Resists change in flux
 - Negative sign

$$B_1 = \frac{\mu_0 (1 + \aleph) N_1 I_1}{L_1}$$

Power Supply Design Matrix

	Adequate Power (0.3)	Lifespan (0.25)	Cost (0.05)	Patient Safety (0.3)	Size (0.1)	Total
Solenoid	6 (1.8)	6 (1.5)	6 (0.3)	6 (1.8)	7 (.7)	5.1
Direct Power Supply	7 (2.1)	5 (1.25)	6 (0.3)	1 (0.3)	6 (0.6)	4.55
Battery	4 (1.2)	2 (0.5)	2 (0.1)	5 (1.5)	4 (0.4)	3.6

Internal Pressure Gauge

- 2 Designs
 - Stain gauge
 - Capacitor
 - Cylindrical
 - Flexible Dome
- Design Matrix

Design 1: Strain Gauge

(http://www.allaboutcircuits.com/vol_1/chpt_9/7.html)

(http://www.answers.com/topic/straingaugevisualization-png)

Wheatstone Bridge

- R2 / R1 = Rx / R3
 - Balance point V=0
 - Changes in Rx disrupt voltage

$$V = \left(\frac{R_x}{R_3 + R_x} - \frac{R_2}{R_1 + R_2}\right) V_s$$

(http://en.wikipedia.org/wiki/Wheatstone_bridge)

Design 2: Capacitor

$$C = \varepsilon A / d$$

$$C = Q / V$$

Cylindrical Capacitor

Pressure Gauge Design Matrix

	Accuracy (0.35)	Durability/ Lifespan (0.3)	Biocompatibility (0.2)	Size (0.1)	Cost (0.05)	Total
Strain	6	5	6	7	7	5.85
Gauge	(2.1)	(1.5)	(1.2)	(0.7)	(0.35)	
Cylindrical	4	5	6	4	5	4.75
Capacitor	(1.4)	(1.5)	(1.2)	(0.4)	(0.25	
Flexible	3	6	6	5	3	4.7
Dome	(1.05)	(1.8)	(1.2)	(0.5)	(0.15)	

Future Research & Calculations

- Power Supply
 - Test different frequencies
 - Test different core material
 - Calculations for magnetic flux
- Pressure Gauge
 - Piezoresistive material quasi-static measurements
 - Change in distance needed for pressure range
 - Deformations of materials