

Metacarpophalangeal Joint Replacement

Team Members:

Team Leader – Hallie Kreitlow BSAC – Kenny Roggow Communicator – Amanda Feest BWIG – Nate Cira

Advisor - Professor Naomi Chesler, Department of Biomedical Engineering Client - Dr. Ramzi Shehadi, Dean Healthcare - Plastic and Reconstructive Surgery

Outline

- Problem Statement
- Background
 - Competition
- Client Requirements
- Material Considerations
- Joint Designs
- Future Work

Problem Statement

The goal of this project is to design a prosthetic replacement for the metacarpophalangeal (MCP) joint that can be used in patients who do not have collateral ligaments or a volar plate. The prosthetic should have a long lifespan after implantation, allow the patient to maintain appropriate range of motion, have sufficient strength and rigidity between halves of implant, and osteointegrate to prevent micromotion.

Background

Metacarpophalangeal joint

Congenital defects, severe trauma

Competition

- Silicone implants
 - Cause erosion in bone at implant-bone interface
- Semi-constrained finger prosthesis
 - Requires collateral ligaments to prevent tensile dislocation

Client Requirements

- Must provide stability
- Must promote osteointegration
- Must have an appropriate range of motion
 - Flexion: 0-90°
 - Abduction/adduction: ~0-20°
- Must be biocompatible
- Must have a lifespan of 10-30 years
- Must not fail at implant/bone interface

Material for Articulating Surface

- Only use currently implanted FDA-approved materials
- Materials for articulating surface
 - Silicone
 - Titanium alloy with ceramic
 - Cobalt–Chrome with UHMWPE

Material for Bone Interface

- Stress shielding hinders osteointegration
- Mismatch of elastic modulus

Material for Bone Interface

- Pyrocarbon
 - Graphite substrate
 - Similar properties to bone

- Porous Tantalum
 - "Trabecular Metal"
 - Similar properties to bone

Hydroxyapatite coating

- Crystalline coating
- Proven to promote osteintegration
- Bone is 66% HA
- Only integration mechanism for pyrocarbon

Rigid Hinge

- Advantage
 - Simplicity
- Limitation
 - Does not allow abduction or adduction

•	· ·	Ease of Implantation		Manufacturability	Total
35/35	15/20	10/20	15/20	5/5	80/100

Sloppy Hinge

- Advantage
 - Ideal restriction of flexion/extension
- Limitation
 - Difficult to manufacture

•	•	Ease of Implantation		Manufacturability	Total
35/35	15/20	10/20	12/20	2/5	74/100

Ball and Socket

- Advantage
 - Ideal restriction of range of motion
- Limitation
 - Difficult to manufacture

•	Abduction/ Adduction	Ease of Implantation	_	Manufacturability	Total
35/35	20/20	15/20	15/20	1/5	86/100

Silicone Hybrid

- Advantage
 - Elastic connection between stems absorbs loads
- Limitation
 - Decreased restriction of range of motion

•	•	Ease of Implantation	_	Manufacturability	Total
30/35	15/20	10/20	18/20	5/5	78/100

Locking Groove

- Advantage
 - Ideal restriction of range of motion
- Limitation
 - Stress concentrations weaken the implant

•	Abduction/ Adduction	Ease of Implantation		Manufacturability	Total
35/35	20/20	15/20	15/20	3/5	88/100

Design Matrix

Criterion	Weight	Rigid Hinge	Sloppy Hinge	Ball and Socket	Silicone Hybrid	Locking Groove
ROM: Flexion/ Extension	35	35	35	35	30	35
ROM: Abduction/ Adduction	20	15	15	20	15	20
Ease of Implantation	20	10	10	15	10	15
Consequence of Failure	20	15	12	15	18	15
Manufacturability	5	5	2	1	5	3
Total	100	80	74	86	78	88

Future Work

- Model design in SolidWorks
- Test range of motion
- Perform finite element analysis using various materials
- Fabricate final design

Acknowledgements

- Professor Naomi Chesler (advisor)
- Dr. Ramzi Shehadi (client)
- Professor Heidi Ploeg
 - Sarah Duenwald
 - Ben Fjellanger
 - Holly Liske
- Professor Ray Vanderby

Questions?

References

For pictures (in order of appearance)

- A New MCP Joint Prosthesis http://www.iaeng.org/publication/WCE2007/WCE2007_p p1443-1445.pdf
- Finger Joint Implant System http://www.fingerreplacement.com/DePuy/docs/Finger/Replacement/During%20Surgery/surg_neuflex.html
- Zimmer Trabecular Metal http://www.zimmerindia.com/z/ctl/op/global/action/1/id/9511/template/PC/navid/8172
- Pyrocarbon http://www.pyrocarbon.com
- Biomet Regenerex http://www.biometitaly.it/userfiles/image/Technologies/Regenerex. jpg
- Hydroxyapatite <u>www.geocities.com/klyphysics/kvpy.html</u>