

# **Orthopedic Drill Stop Device**

#### **Team Members**

Kara Murphy – Team Leader Alex Bloomquist – Communicator Jon Mantes – BWIG Graham Bousley – BSAC

#### Advisor

**Professor Willis Tompkins** 

**Client** Tim O'Connor

### Overview



- Motivation and Background
- Client Requirements
- Existing Devices
- Electronic Design
- Pressure Clutch Mechanism
- Mechanical Sleeve Mechanisms
  - •Trigger Design
  - Thumb Wheel Design
- Future Work
- References
- Questions

#### 3

# Motivation and Background

- Dr. O' Connor is a resident in Orthopedic Surgery at the UW-Hospital.
- He is concerned about overpenetration when drilling, leading to soft-tissue damage
- Current method: pre-determined drill depth







## **Client Requirements**





- Minimize plunge depth after penetrating far side of the bone.
- Intuitive design for ease of use
- Easy to sterilize
- Precise device so no soft tissue is damaged

## **Existing Devices**



#### **Current Device**

- Used as a drill guide
- No stop mechanism



http://www.hhsurgical.com/Images/Products/1557.jpg

#### **Spinal Drill Guide**

Pre-adjustable depth
Not able to change depth while bit is engaged



http://www.medscape.com



#### **Neurosurgery Drill Bit**

- ACRA-CUT Smart Drill
- Has an outer and inner drill
- Pressure on the inner drill allows the outer drill to spin
- Prevents over-penetration

urocirugia.com/instrumental/index.php? m=01&y=08&entry=entry080116-124850

## **Electronic Mechanism**



- Measures force on drill bit
- Drill speed/feed rate is controlled based on force feedback
- Prevents excess penetration through bone without requiring user's reflexes



Allotta, Benedetto. (1997) A Hand-Held Drilling Tool for Orthopedic Surgery. *IEEE/ASME Transactions on Mechatronics*. 2 (4), 218-229.

## Pressure Clutch Mechanism



- Pressure/Force on drill bit activates clutch and spins bit
- Once the bit penetrates the posterior cortex, the bit stops spinning



- Stop is activated when bit stops spinning
   PRESTURE / FIRLE
- Reduces plunge depth



# Mechanical Sleeve Mechanisms

- Trigger design
- Thumb wheel design
- Dynamically control the depth of the drill bit while drilling
  - Quicker procedure
  - More accurate drilling
- Detents used for millimeter increments



http://www.cnccookbook.com/





#### 9

# Trigger Design

- Similar to caulk gun design
- Trigger progresses drill sleeve forward – increasing depth
- Reduces plunge depth
- Ergonomic grip





### **Thumb Wheel Design**



- Use thumb to adjust drilling depth
- Detent and indents along spur gear allow audible "click"
- Gear ratios allow for a very precise depth adjustment
- Worm gear used to produce linear translation





http://www.zakgear.com/Worm\_Gear\_software.html

# **Design Matrix**



| Design<br>Characteristics     | Mechanical<br>(Trigger) | Mechanical<br>(Thumbwheel) | Electronic<br>Feedback | Pressure Clutch |
|-------------------------------|-------------------------|----------------------------|------------------------|-----------------|
| Cost (5)                      | 5                       | 5                          | 2                      | 4               |
| Durability (15)               | 13                      | 12                         | 10                     | 10              |
| Ease of Use<br>(30)           | 30                      | 25                         | 20                     | 22              |
| Ease of<br>Sterilization (10) | 8                       | 8                          | 6                      | 6               |
| Precision (40)                | 35                      | 38                         | 40                     | 35              |
| Total                         | <u>91</u>               | 88                         | 78                     | 77              |

#### 12

## Future Work

- Continue work on Trigger Mechanism
- Finalize design
- Research Materials
- Begin building!
- Testing for durability, accuracy





#### References



- Allotta, Benedetto. (1997) A Hand-Held Drilling Tool for Orthopedic Surgery. *IEEE/ASME Transactions on Mechatronics.* 2 (4), 218-229.
- Dubrowski A, Backstein D. (2004) The contributions to kinesiology to surgical education. *Journal of Bone and Joint Surgery. 86 (2), 2778-81.*
- Greenburg A, inventor, 2003 Dec. 30. Sleeved stop for a drill bit. United States patent US 7,210,881.
- Ryan C, inventor, 2004 Mar. 30. Adjustable depth drill bit. United States patent US 7,163,542.



# Questions?

