Wireless Oximetry

BME 200/300 Design October 15, 2010

Client: Dr. Chris Green

Advisor: Dr. Amit Nimunkar

Overview

- Pulse Oximetry
- Motivation
- Requirements
- Current Devices & Concepts
- Power
- Wireless
- Hardware
- Next Steps
- Acknowledgements

Pulse Oximeter

- Non invasive medical device
- Measures
 - $_{\circ}$ Oxygen saturation
 - 。 Pulse

Pulse Oximetry

- Different wavelenghs of light absorbed differently by oxygenated hemoglobin
 - $_{\circ}$ Red
 - ∘ Infrared (IR)
- Probe has LEDs and photodiode
 - Transmission
 - Reflectance

Pulse Oximetry

- Observing peaks in signal yields pulse
- Blood oxygen saturation
 - $_{\circ}$ Ratio of red signal to infrared
 - Lookup table gives number

Clinical Applications

- Anesthesia
- Post Anesthesia Care Unit
- ICU
- Neonatal
- Transport
- Diagnostic Lab

Motivation

- Children & babies are indiscriminant of cable
 - 。 Will remove probe via cable
- Would allow for a bigger range of motion
- Utilize existing hardware
- Could also be used for adults (i.e. exercise studies)
 - Not main intention

Requirements

- Device should have minimal
 - Cost (under \$500.00)
 - Power consumption
 - Size
 - Weight (under 70g)
- Aim: no data loss in ADC/DAC conversions
- Should have self-contained power supply of at least 5 hours
- Must interface with existing hardware

Contec

- Asian based company with multiple oximetry devices that display readings directly on the probe
- Some of these products have Bluetooth capabilities that allow the data to be transferred to a computer source

Nonin

- Another popular oximeter manufacturer
- Has similar solutions as Contec but at (~\$500 price range)
 - Can connect with many Bluetooth devices
 - 。 Cell phone PDA, laptop etc.
- Model with wrist attachment (Bluetooth) \$1500.00

Current Wireless Oximeters

 Neither of these companies have a modular attachment for an existing wired device

Power

Power Needs

- At least 5 hours of continuous running time
- At least 5V
- Minimal weight/size

Traditional Alkaline (AAA)

- Advantages
 - More capacity
 - $_{\circ}$ Inexpensive
- Disadvantage
 - $_{\circ}$ Lower voltage
 - Heavier
 - $_{\circ}$ Disposable

http://www.pizzazzretail.co.uk/index.php?main_pa ge=popup_image&pID=299

Lithium Ion Rechargable

- Advantages
 - Higher voltage
 - Lightweight
 - Reusable
- Disadvantages
 - Lower capacity
 - Expensive

http://www.batteryspace.com/ProductImages/charger/RCR_comb.jpg

Design matrix

General information regarding the batteries

Wireless

WiFi

- Advantages
 - High bandwidth
 - ∘ ~100 meter range
 - $_{\circ}$ ~50 Mbps transfer rate
 - Computer interfacing
- Disadvantages
 - $_{\circ}$ Power consumption
 - Software required
 - Hardware required (adapter, router, access point)

Bluetooth

- Advantages
 - License free
 - Lowest cost (~\$75)
 - "Channel hopping" avoids interference
 - Low power consumption
- Disadvantages
 - ∘ ~10 meter range
 - 。 ~1 Mbps data transfer rate
 - $_{\circ} \ \ Security$

Zigbee

- Advantages
 - Lowest power consumption
 - $_{\circ}\;\;$ Ad-Hoc network configuration
 - Fast network connection
- Disadvantages
 - New technology
 - ∘ ~10 meter range
 - $_{\circ}~~\sim$ 250 kbps transfer rate
 - Highest cost (~\$250)

Infrared

- Advantages
 - Low power consumption
 - No software
 - Ad-Hoc network configuration
- Disadvantages
 - Range (requires line of sight)
 - $_{\circ}$ Low level of security
 - 。 ~20 kbps transfer rate
 - $_{\circ}$ Interference from ambient light

Design Matrix

	Bluetooth	WiFi	Zigbee	Infrared
Power Consumption (25)	20	10	25	20
Size (15)	15	5	15	10
Programming Feasibility (35)	30	35	25	25
Bit Rate (5)	4	5	3	3
Cost (20)	20	10	10	5
Total (100)	89	65	78	63

Hardware

Schematic - Probe

^{*} Method of data transfer dependent on wireless method and chip chosen

Schematic - Oximeter

^{*} Method of data transfer dependent on wireless method and chip chosen

Considerations

- Microcontroller
 - Should have both ADC and DAC of sufficient resolution
 - Will need to power probe
 - Should allow for In-Circuit Serial Programming (ICSP)
 - o Given schematics does not include all necessary components

Considerations

- Wireless
 - Both need to be paired
 - Bidirectional communication necessary
- Power
 - o Oximeter dongle powered by oximeter?
 - Probe dongle will need "external" power source

Next Steps

- Continue testing on pulse oximeter
- Begin testing Bluetooth chips
- Pick microcontroller to fit needs
- Prototype

Acknowledgements

- Dr. Chris Green
- Cindy Moodie
- Amit Nimunkar
- Dennis Bahr

References

- Webster, J. G. ed. 1997. *Design of Pulse Oximeters*. New York: Taylor and Francis.
- Webster, J. G. ed. 2004. Bioinstrumentation. New York: John Wiley & Sons, Inc.
- Principles of Pulse Oximetry Technology. 2002. [Online]
 http://www.oximetry.org/pulseox/principles.htm.
- Clinical Applications. 2002. [Online]
 http://www.oximetry.org/pulseox/applications.htm.
- In-Circuit Serial Programming (ICSP) Guide. Microchip, Inc. May 2003. [Online] http://ww1.microchip.com/downloads/en/devicedoc/30277d.pdf.
- http://www.concordhealthsupply.com/Avant_4000_Digital_Pulse_Oximeter_ System.aspx
- http://www.facelake.com/cms50e.html

