

EMBOUCHURE ASSISTIVE DEVICE

MEGAN JONES, ANDY LACROIX, PATRICK CASSIDY, VIVIAN CHEN CLIENT: ELON ROTI ROTI ADVISOR: AMIT NIMUNKAR, Ph.D.

ABSTRACT

Bell's palsy is a nervous disorder that may develop into synkinesis. Patients suffering from synkinesis experience involuntary muscular movements accompanying voluntary movements [1]. The client suffers from facial synkinesis, which affects her ability to play the clarinet. However, she wishes to be able to play semi-professionally, which requires playtime to be extended to at least 30 minutes. Therefore, the aim of this project is to develop an assistive device that would help the client to maintain a proper clarinet embouchure.

BACKGROUND

BELL'S PALSY

- Paralysis of facial muscles due to dysfunction of cranial nerve VII
- Nerve inhibition because of inflammation
- Specific cause for inflammation is not known
- Treatments available: steroids and physiotherapy, etc.
- Good prognosis even without treatment

SYNKINESIS

Result of misdirected nerves after trauma

Figure 1: Misdirection of neurons to wrong motor endplates [1].

- Most often affects muscles around mouth
- Treatments available: surgery, facial retraining, biofeedback, mime therapy, and Botox

EMBOUCHURE

- Embouchure: shape of mouth while playing instrument
- Main muscles engaged are zygomaticus, buccinator, orbicularis oris

Figure 2: Clarinet embouchure [2]

DESIGN CRITERIA

- Extend practice time to at least 30 minutes
- Easy to use/clean
- Lightweight
- Help maintain pressure on mouthpiece
- Must not restrict playing
- Reduce air leakage at corner of mouth
- Low cost
- "Headgear"

TESTING

Figure 8: Strength testing of sliding piece. Maximum stress is 12.5 MPa with 10 lb force. ABS yields a factor of safety of 4.

Figure 10: Strength testing of force arm. Maximum stress is 78.7 MPa with 10 lb force. Aluminum yields a factor of safety of 3.5.

→ Yield strength: 275,000,000.0

Strength Testing

- SolidWorks was used to test the strength of each component
 - Von Mises stresses
- Forces applied: 10 lbf
- Materials (yield strength)
 - Simulation: 6061 Aluminum (275 MPa)
 - Prototype: ABS (48 MPa)

<u>Outcome</u>

- Only arm would fail if made of ABS
 - Changed to zinc plated copper tubing
- ABS prototype constructed with a factor of safety of 3

Figure 9: Strength testing of inner ring. Maximum stress is 2.7 MPa with 10 lb force. ABS yields a factor of safety of 18.

Figure 11: Strength testing of base ring. Maximum stress is 2.8 MPa with 10 lb force. ABS yields a factor of safety of 17.

FINAL DESIGN

- Headgear design
- Device sits over left ear
- Device is secured to head using head straps
- Inner ring rotates freely within base
- Allows for correct placement on cheek
- Sliding track affixed with set screw provides forward force on cheek
- Set screw allows adjustment of force arm
- Force arm rotates to apply inward pressure on cheek
- Beveled base and curvature of force arm allow better accuracy in force application

Figure 3: Force simulation on client's face with fingers.

Figure 4: SolidWorks representation of device.

Figure 5: SolidWorks representation of base ring.

Figure 6: SolidWorks representation of sliding piece.

Figure 7: SolidWorks representation of inner ring.

CONCLUSION

Figure 12: Client trying on prototype.

Accomplishments

- Construct semi-functional prototype with headgear design
- Able to precisely put arm on face
- Mounts easily on head
- Low cost, budget of <\$100

FUTURE

- User testing with client
 - Efficacy of force application
 - Ease of use and comfort
 - Playing time
- Surface EMG
 - Measure muscle contractions on unaffected or compensating side of the face
 - With and without the prototype
- Design Modifications
 - Make set screws easier to use with one hand
 - Mold padding to the curvature of the user's head
 - Construct additional force applicators that include different sizes, materials and possibly heat depending on the client's preference
- Reconstruct design precisely out of aluminum

REFERENCES

- [1] Nakamura, K., Toda, N., Sakamaki, K., Kashima, K., & Takeda, N. (2003). *Biofeedback Rehabilitation for Prevention of Synkinesis after Facial Palsy*. Otolaryngology -- Head and Neck Surgery, 128(4): 539-543
- [2] http://www.clarinet-now.com/poor-clarinetembouchure.html

ACKNOWLEDGEMENTS

- Amit Nimunkar
- Elon Roti Roti
- Brian
- Jacklyn Diels
- Brooke Takac
- Trevor Hunt