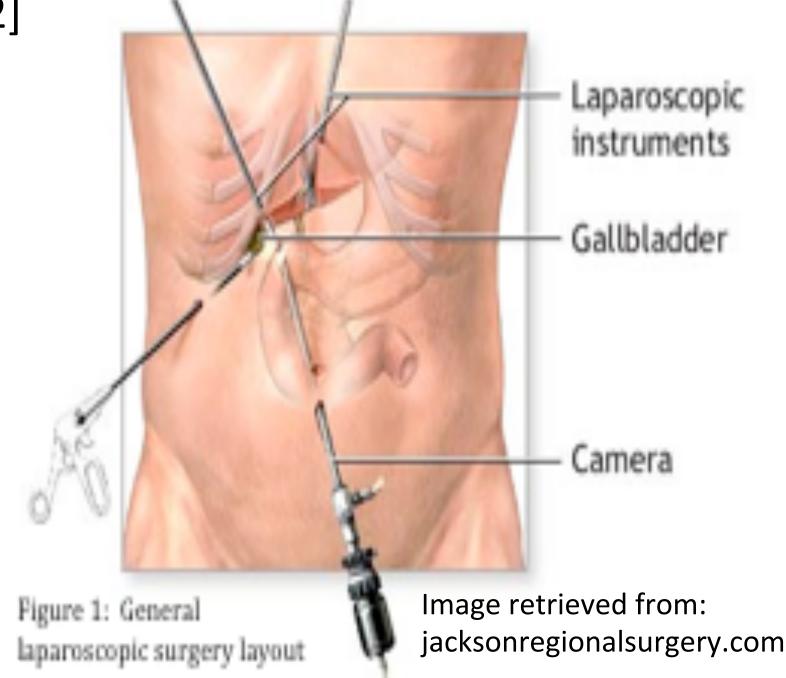


Identification Marking of Laparoscopic Instruments for Video

Recording

Jared Ness, Brad Wendorff, Bryan Kloosterboer, Matt Jensen

Client: Dr. Carly Seaberg – Department of Surgery UW-Hospital Advisor: Professor John Webster – Department of Biomedical Engineering University of Wisconsin-Madison


ABSTRACT

A side effect of quality teaching methods, are students who perform the concepts they've learned at a high level. A higher surgery success rate generally correlates with physicians who are better trained. Laparoscopic surgeries require the use of a camera to serve as the surgeon's eyes, and recording of the surgery is often used to evaluate a resident's performance. Our client is requesting that we design an accessory-marking device to the 5 mm diameter laparoscopic instrument, so that when a teaching physician and resident are operating simultaneously, their instruments can be distinguishable on screen both during and post-surgery.

BACKGROUND

- Laparoscopic surgery, otherwise known as minimally invasive surgery or keyhole surgery, was first implemented on humans in 1910 by Swedish physician Hans Christian Jacobaeus [2]
- Requires 3 4 small incisions of 5 mm to 10 mm

Benefits include shorter recovery time than traditional open surgery and minor scarring [2]

- A 5 mm diameter trocar, otherwise known as a port, is placed through each incision and can pass an instrument with about 1 mm to spare on each side
- Commonly used for surgeries in abdominal area as shown in Figure 1
- Reduces risk of hernia development
- The laparoscopic instrument consists of a handle with a trigger like mechanism, connected to a various sized diameter shaft with lengths ranging from 28 cm to 36 cm
- A variety of tips are used as illustrated in Figure 2, some with cutting function, and others with grasping function

Right Angled Dissecting Forcep

2X4 teeth Grasping **Forcep**

Figure 2: Variety of tip shapes and sizes used in laparoscopic surgeries Retrieved from: www.laparoscopyhospital.com/Laparoscopic Instrument Detail2.doc

DESIGN CRITERIA

- Device must be sterile and made out of a biocompatible material
- If deemed reusable, must withstand sterilization processes a series of enzyme baths and steam heating up to 132° C
- Cannot deviate from pre-surgery position or interfere with any moving instrument mechanism as shown in Figure 3

Figure 3: Region of attachment for marking device.

- To be introduced into the body, the device needs to be made radiopaque so it is visible on X-Ray should it fall off in the body
- Maximum thickness of 1 mm to fit through trocar
- Material cannot absorb heat while surgeon is cauterizing

PRELIMINARY RESEARCH

- Determined materials to be used for each design based on biocompatibility
 - Acrylonitrile Butadiene Styrene (ABS)
 - Acrylated Olefin
 - Silicone
- Explored options of making the device radiopaque barium sulfate

simultaneous instrument

Image retrieved from: http://www.windhamsurgicalgroup.com/ services_Laparoscopic_Surgery.php

MOTIVATION

Figure 4: Removal of a

gallbladder involving

operation

- As shown in Figure 4, it is difficult to distinguish one instrument from another while operating simultaneously in the body
- Previous attempts at marking the instruments failed
- No current solutions to problem on market

[1] "Heat Shrink Tubing - Home." PTFE, FEP and PFA Fluoroplastic Tubing and Heat Shrink. 2011. Web. 20 Oct. 2011. http://www.texloc.com/

[2] "Laparoscopic Colon Surgery: Laparoscopic Colon Resection." Comprehensive Center for Laparoscopic Surgery -- White Plains, New York.

[3] "SIL-TEC Medical Grade Radiopaque Sheeting from Technical Products, Inc. of Georgia, U.S.A." Technical Products, Inc. of Georgia. 2011. [4] "What Is Laparoscopic Surgery." Center for Pancreatic and Biliary Diseases. University of California, Department of Surgery. Web. 12 Oct. 2011. 2011. <a href="http://www.surgery.usc.edu/divisions/tumor/pancreases/web%20pages/laparos

%20SURGERY.html>. [5] "FDA Approved Plastics Materials - Order Online." Plastic Sheet, Plastic Rod, PlasticTubing - Buy Online. 2011. Web. 16 Oct. 2011. http:// www.professionalplastics.com/FDAApprovedPlasticMaterials.

FINAL DESIGNS

Snap Clamp

- Constructed of acrylonitrile butadiene styrene (ABS).
- Dimensions are 2.5 cm long by 0.5 mm thick with a 315° revolution
- Production cost per piece \$3.00 via rapid prototyping
- White for visible contrast and minimal distraction
- Radiopaque thread glued on inner radius
- One-time use material loses compression force after several applications
- Disposable

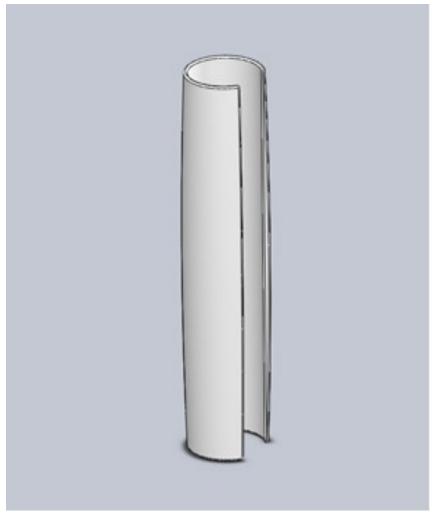


Figure 4: SolidWorks rendering of the Snap Clamp Design.

Figure 6: Snap clamp design entering trocar

Heat Shrink Wrap

- Medical grade heat shrink tubing made of acrylated olefin
- 4 cm long by 0.64 mm thick
- Shrinks in boiling water
- Proposed application for the OR staff uses hot water bath
- Minimal resistance through trocar as illustrated in Figure 8
- Radiopaque thread shrink compressed between wrap and shaft
- Colored white to ensure visibility with minimal distraction
- Requires 45 seconds in water bath and 3 minutes of drying time
- Disposable

Figure 7: Applied heat shrink

Figure 8: Heat shrink wrap design entering trocar

FUTURE WORK

- Further explore injection molding options, and other materials
- Design sterile packaging for the mass produced product
- Addition of barium sulfate to ABS before molding
- Find radiopaque heat shrink tubing
- FDA validation

ACKNOWLEDGMENTS

Special thanks to Dr. Carly Seaberg, Professor John Webster, Professor Tim Oswald, and Dr. Scott Rand