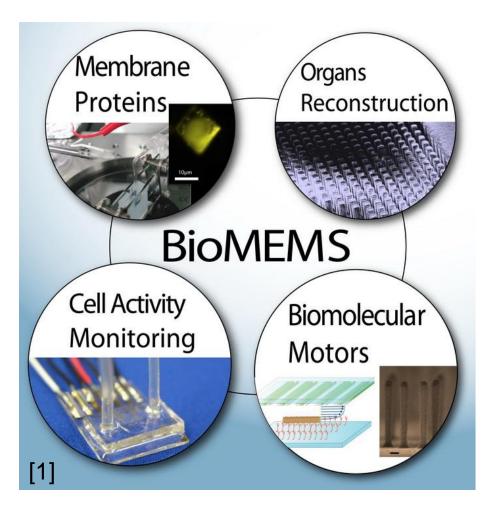
BioMEMS Photomask Aligner

Ross Comer-BWIG Paul Fossum-BSAC Nathan Retzlaff-Communicator William Zuleger-Team Leader

Client: Professor John Puccinelli, PhD

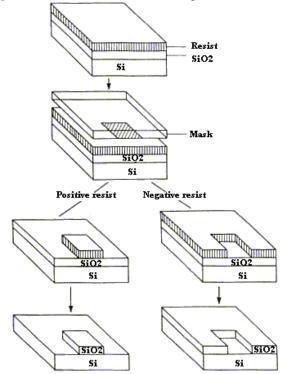
Advisor: Professor Willis Tompkins, PhD


Overview

- BioMEMS
- Photolithography
- Current Alignment Techniques
- Design Alternatives
- Future Work
- Q&A

Biological MicroElectroMechanical Systems

- The science of very small biomedical devices
- Subset of MEMS
- At least one dimension from 100nm to 200µm
- New materials that aid our understanding of the microenvironment or biocompatibility



Photolithography

[2] [3]

- Optical means for transferring a pattern onto a substrate
- Patterns are first transferred to an imagable photoresist layer

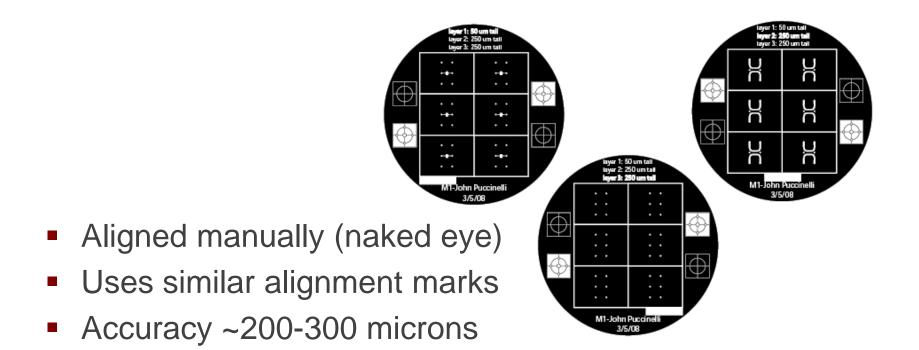
Basic Steps to the Process

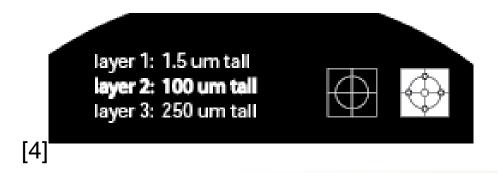
- Clean the wafer
- Form a barrier layer formation
- Spin application of the photoresist
- Soft bake to harden the photoresist
- Align the Mask
- UV Exposure and development
- Hard bake to further harden the photoresist and improve adhesion

Karl Suss MA-6 Mask Aligner

- Electronic
- Multiple wafer sizes
- Accuracy ~ 0.5 microns
- Expensive (\$30,000 used)

[4]

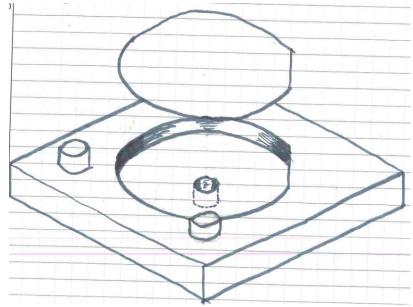

Dr. Justin Williams' Method


- Utilizes former microscope stage
- Manual adjustment
- Glass separating UV light and mask
- Accuracy ~ 50-200 microns

Dr. John Puccinelli's Method

Design Requirements

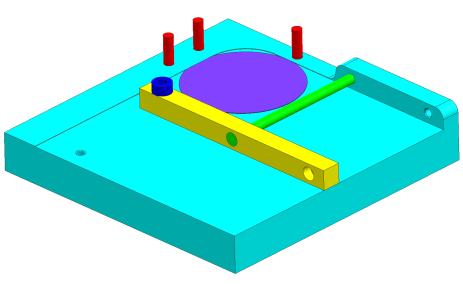
- Create a photomask aligner that is:
 - accurate between 10µm and 100µm
 - less than \$200 to fabricate
 - relatively simple to use
 - reproducible by other labs


Key Components

- Epilog 40 Watt Laser Cutter
 - Set between 75-1200 dpi (up to ~21 µm resolution)
- Wafers
 - WRS Materials (vendor)
 - Flats
 - 1 or 2 flat edges depending on crystal plane direction
 - 3" wafer
 - Diameter tolerance $\pm 300 \ \mu m$
 - 6" wafer
 - Diameter tolerance $\pm 200 \ \mu m$

Design #1 – Ejector Well

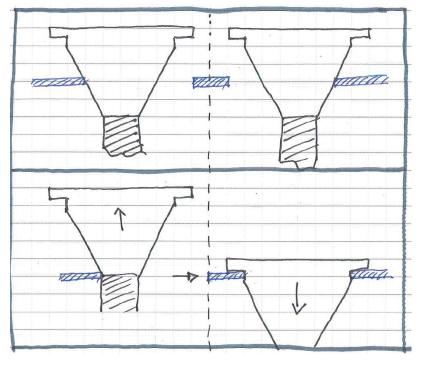
- Operation
 - Wafer profile cutout
 - 2 rods to align photomask
- Pros
 - Very simple to use
 - Highly repeatable
- Cons
 - Tight machining tolerances
 - Wafer variability
 - Doesn't work for 3" and 6" wafers


Design # 2 – Wafer Threaded Lock

Operation

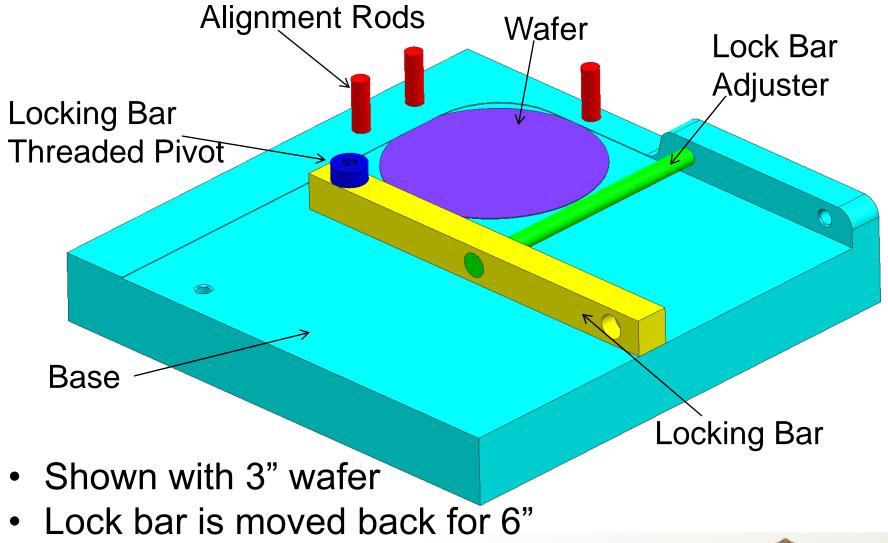
- Wafer wedged into corner
- Threaded rod tightened to secure wafer

Pros


- Cost and manufacturability
- Works with 3" and 6" wafers
- Cons
 - Repositioning wafer accuracy
 - Added alignment step

Design #3 – Tapered Screws

- Operation
 - Multiple threaded holes surrounding wafer
 - Tapered screws position mask
- Pros
 - Added ability to position mask
 - Simple concept
- Cons
 - Dynamic adjustment (not linear)
 - Repositioning of wafer


Design Matrix

All rated on 0-5 scale, then multiplied by weight

Criteria	Possible Designs		
Considerations (Weight Multiplier)	Ejector Well	Wafer Threaded Lock	Tapered Screws
Accuracy/Precision (x7)	2	3	4
Cost (x8)	3	5	4
Manufacturability (x2)	2	4	4
Reproduceability (x1)	4	3	3
Ease of Use (x2)	5	4	3
Total	56	80	77

Final Design

Future Work

- 3D CAD Models
 - Prints (toleranced)
- Fabrication
 - COE Student Shop
 - Tosa Tool (Madison)
- Testing
 - Laser printer cutting accuracy
 - Acquired alignment accuracy (testing with 2 and 3 layers)
 - Comparative analysis to current alignment techniques
- Adjustments/Improvements
- Final Report/Presentation
- DIY Report for personal fabrication

Acknowledgements

- John Puccinelli, PhD, Associate Faculty Associate, UW-Madison BME, Client
- Willis Tompkins, PhD, Advisor
- Greg Czaplewski, Graduate Research Student, Williams Lab
- Sarah Brodnick, UW-Madison Engineering Silicon wafer order coordinator
- Justin Williams, PhD, Associate Professor BME (BioMEMS instructor)

