Right-angle Dissector Scissors Hybrid Surgical Instrument

Ann Wang - Leader Joe Benert - Communicator Nick Schapals - BWIG Jay Kler - BSAC

Advisor: Tracy Puccinelli Client: Dr. Emily C. Hartmann

Contents

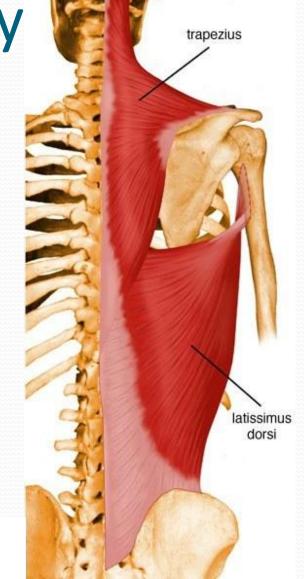
- Background and motivation
- Problem statement and client requirements
- Existing devices
- Design 1: Built-in Blade
- Design 2: Guarded Scissors
- Design 3: Trigger Scissors
- Design selection and final design
- Material selection
- Future work
- Q&A

Background: Client

- Dr. Emily C. Hartmann
 - Plastic & Reconstructive Surgery resident at UW-Madison Hospital
- Surgery: latissimus dorsi flap breast reconstruction
 - Conducted following mastectomy due to breast cancer

Background: Anatomy

Latissimus dorsi


Origin

- Inferior 6 thoracic vertebrae
- Lumbar vertebrae
- Iliac crest

Insertion

Bicipital groove

Figure 1: Anatomy of latissimus dorsi muscle¹

Background: Breast Reconstruction

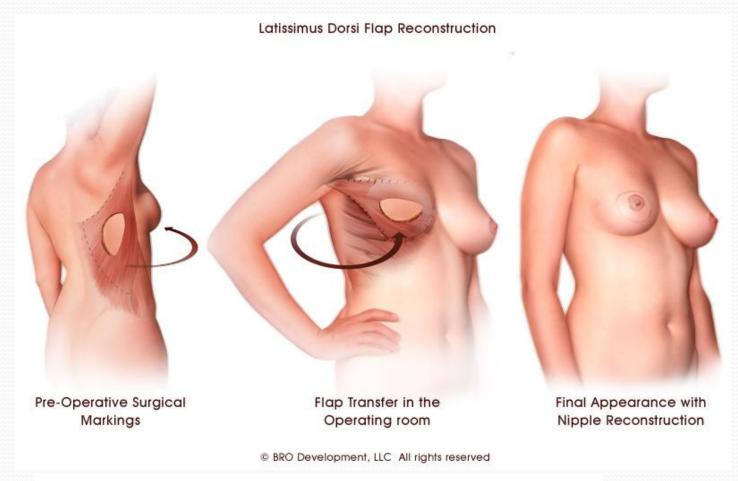


Figure 2: Process of latissimus dorsi flap breast reconstruction²

Problem Statement

- Operation in deep hole
 - Assistant cannot reach
 - Surgeon's other hand occupied

 Dissect around sensitive vascular structures

Figure 3: Surgeon using right-angle dissector in deep hole³

Right-Angle Forceps

- Kantrowitz 90° forceps
 - Length: 7.5 inches (19.1cm)
- Used with scissors or bovietip cautery device

- Multiple functions:
 - Dissector
 - Forceps

Figure 4: Right-angle forceps

Right Angle Harmonic Scalpel

 Combines right-angle forceps and Harmonic Scalpel[®]

Ultrasonic vibration cauterizes tissue

- No prototype constructed
- Prohibitively expensive

Client Requirements

- Incorporate dissector and scissors function
 - One-handed
 - Maintain visibility
 - Forceps function optional

- Surgery-compatible
 - Surgical-grade stainless steel
 - Autoclavable

\$200 budget

Design 1: Built-In Blade

- Inner edges sharpened
- Maintains dissector function
 - Blunt outer edges

- Incorporates scissors function
 - Sharp inner edges

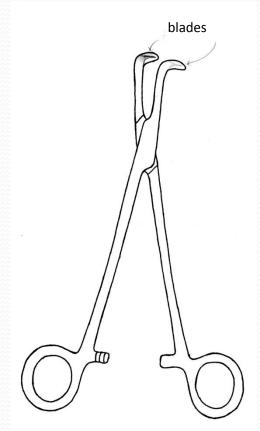


Figure 5: Built-in blade design

Design 2: Guarded Scissors

- Scissors blades on inner edges
- Shell attached to outer edges
- Shells can be extruded and locked

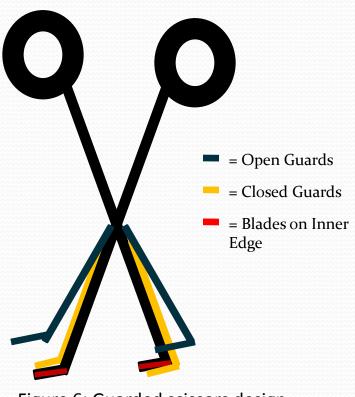


Figure 6: Guarded scissors design

Design 3: Trigger Scissors

- 1- Trigger
- 2- Spring
- 3- Cable
- 4- Pivot
- 5- Blades

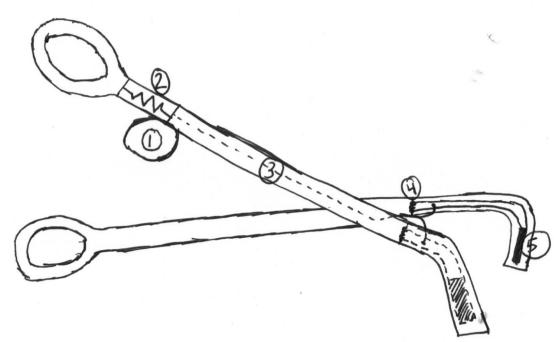


Figure 7: Trigger scissors design

Design Selection Matrix

	Patient	Functionality	Client	Sterilizability	Feasibility	
Design	Safety (30)	(20)	Preference (20)	(15)	(15)	Total
Built-in						
Scissors	10	15	10	15	15	65
Guarded						
Scissors	20	20	18	10	13	81
Trigger						
Scissors	30	20	20	5	10	85

Table 1: Design selection matrix

Final Design: Trigger Scissors

 Maintains dissector function

- Incorporates scissors
- Ergonomically comfortable

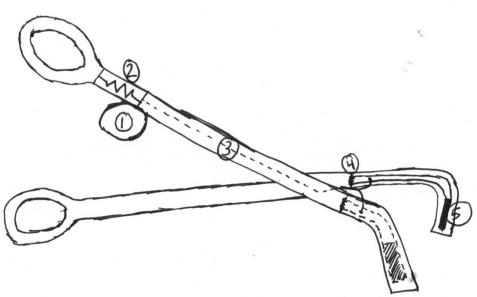


Figure 7: Trigger scissors design

Materials Selection

Requirements:

- Surgical-grade stainless steel
- Autoclavable
- Three grades of surgical steel
 - 316,420,440
- Autoclavable polymers possible
 - Different weight

Future Work

- Refine trigger mechanism
- Build prototype

Figure 8: Example of rapid prototyping printers⁵

- Testing
- Refine design

References

- 1. Andre, J. (2008). Latissimus Dorsi. University of Washington Department of Radiology. Retrieved October 7, 2012, from http://www.rad.washington.edu/academics/academic-sections/msk/muscleatlas/upper-body/latissimus-
- 2. Israeli, R., Feingold, R. S., & Korn, P. T. (2007, October 21). Latissimus Dorsi Flap. In *Breast Reconstruction*. Retrieved October 8, 2012, from http://www.breastreconstruction.org/TypesOfReconstruction/dorsi_flap.html
- 3. Ghorbani, N. (2011, August 28). One Stage Breast Reconstruction- 5 of 7. Retrieved October 13, 2012, from http://www.youtube.com/watch?v=uvq1hEqjMy4&feature=relmfu
- 4. Berkeley Point, copyright 2000-2012. retrieved September 26, 2012, from www.berkeleypoint.com/learning/stainless.html
- 5. Rapid Prototyping (2012). In Specturm Plastics Group. Retrieved October 13, 2012, from http://midwestplasticcomponents.com/services/rapid_prototyping/

Q&A

• Questions?