Developing an Oxygen Detection Device for a Microfluidic Hypoxia Chamber Design Matrix October 19^{th} , 2012

Client: Professor Brenda Ogle, PhD

Advisor: Professor Randolph Ashton, PhD

Team: Matthew Zanotelli

Chelsea Bledsoe Karl Kabarowski Evan Lange

Oxygen Sensor Format			
Factors	Thin-Film Sensors	Microparticle/ Nanoparticle Sensors	Water-Soluble/ Macromolecule Probes
Accuracy/ Sensitivity (30)	4	5	2
Cost (25)	3	3	1
Ease of Use (20)	5	4	3
Ease of Assembly (15)	4	3	4
Biocompatibility (10)	5	4	2
Total Points	81	78	45

Oxygen-Sensitive Luminescent Materials			
Factors	Ruthenium-based	Metalloporphyrin-based	
Luminescence	5	3	
Properties (25)			
Accuracy/	2	5	
Sensitivity (30)			
Unquenched	2	4	
Lifetime (10)			
Cost (25)	4	2	
Biocompatibility	3	5	
(15)			
Total Points	67	73	

Design Alternatives:

Ruthenium-based

- High luminescence quantum yield
- Very photostable
- Short excited-state lifetimes lead to lower sensitivity to oxygen than is necessary in certain applications (esp. low oxygen environments)
- Used in thin film sensor and nanoparticles
 - Thin film sensor modified to be soluble in silicone films
- Ru(phen)2+ can have phototoxic effects
 - When used as a dye, repeated illumination caused plasma membranes to rupture
- Most are excitable with blue, green, yellow, or orange LEDs

Metalloporphyrin-based

- Phosphoresce rather than fluoresce, which leads to lower luminescent quantum vield
- Longer excited-state lifetime
- Higher sensitivity to oxygen
- Poor photostability
 - o Pt- and Pd-OEPK have significantly improved photostability
- Have been used in microfluidics and for inter- and intra-cellular measurements
- Generally encapsulated in a polymer or sol-gel matrix or water-soluble
- No leaching was found from polymer matrices
- Most are excitable with blue, green, yellow, or orange LEDs

Thin-film sensor

- Encapsulating the sensor in polymer or sol-gel matrix reduces likelihood of unwanted interactions
- Typically fabricated by either pipetting or spinning solutions of the indicator and encapsulation medium onto a substrate of interest such as glass slides, polymers, or polyester foils
- Successfully used with microfluidics already
- Usually excited with either trans- or epi-illumination

Microparticle/Nanoparticles

- Encapsulating the sensor in polymer or sol-gel matrix reduces likelihood of unwanted interactions
- Fabricated by doping polymer or silica beads with luminescent indicator dye or by grinding indicator-doped ormosil
- Used directly or embedded in another material such as silicone or hydrogel
- Can add particles to silicone or hydrogel thin-films within the channels

Macroparticles/water-soluble

- More expensive (need to change media over course of the experiment)
- Water-soluble probes, which may be bound to albumin or other molecs to improve sensor characteristics
- Very versatile
- Likely to interfere with their environment
- Difficult to control sensor parameter
- May allow 3D mapping

Final Design:

- Metalloporphyrin-based thin-film sensor
 - o Ideally will use PdOEPK if cost appropriate otherwise PtOEPK