Forearm Fracture Model

Max Schultz (Team Leader)

Taylor Moehling (Communicator)

Luke Haug (BWIG)

Colin Dunn (BSAC)

Outline

- Client
- Problem Statement
- Background
- Existing Products/Procedures
- Design Specifications
- Design Matrix
- Final Design
- Future Work
- Acknowledgements

Client

Dr. Matt Halanski
Orthopedic Surgeon
Clinical Medicine
Orthopedic Research
Associate Professor

Problem Statement

To develop a pediatric forearm fracture model that provides temperature, skin surface pressure, and bone alignment feedback for use by medical school residents in order to practice and learn safe, effective casting techniques.

Background

- 75% pediatric forearm fractures are distal
- Both bones or only radius
- Caused by fall on outstretched hand
- May include wrist fracture
- Proximal fragment in neutral or slight supination
- Weight of hand with pronator quadratus pronates distal fragment

Distal forearm fracture http://en.wikipedia.org/wiki/Distal_radius_fracture

Background

Volar Angulation
http://www.learningradiology.com/archives05/COW%20157-Galeazzi%20Fx/galeazzicorrect.htm

- When completely broken, bones shorten, angulate, and rotate within surrounding membrane and muscle attachments
- Angulation
 - Volar
 - Dorsal
 - Toward or away from interosseous space
- Axis of rotation from distal ulnar head to proximal radial head

Background

Fracture Types:

- Growth plate fracture (Physeal fracture)
- Torus fracture
- Metaphyseal fracture
- Greenstick fracture
- Galeazzi fracture
- Monteggia fracture

Greenstick Fracture http://www.imageinterpretation.co.uk/wrist.html

Existing Products/Procedures

- Teaching tools not commercially available
- BME 402 Team Spring 2013
- Residents currently learn casting in situ with instructions from experienced orthopedic surgeon

Final product in Spring 2013

Client's previous forearm model

BME 402 Team Spring 2013

- Radius and ulna represented as one piece
- Strain gage potentiometers measure fracture angle
- Tekscan Foot Pressure Mapping system
- Thermocouple for temperature sensing
- Platsil Gel-10 tissue representation
- Latex surgical tubing to create fracture/resistance

Tekscan Foot Pressure Mapping System http://www.prweb.com/releases/2009/09/prweb2886554.htm

Thermocouple http://www.auberins.com/index.php?main_page=index&cPath=20_3

Problems with Existing Design

- Fracture location
- Not user friendly
- Poor accuracy in 3D for alignment
- Poor modular resistance for bone realignment
- No protection for hardware

Bone alignment after Spring 2013. Fracture in the middle, not at the distal end of the arm. Use of bands to create resistance.

Design Specifications

- Create distal fracture in model
- Computer interface
- Mechanical modular resistance
- Record pressure
- Record temperature
- Protect hardware from heat and force
- Realistic model of pediatric forearm

Software Specifications

- Single user interface presenting all data
- Live color coded pressure map
- Internal and external temperature display with alerts for high temperatures
- Fracture angle and displacement display
- Data logging enabling user to analyze

Software interface http://sci.washington.edu/info/forums/reports/pressure map.asp

Component Design Matrices

- Pressure Mapping System
- Modular Fracture System

Pressure Mapping Design Matrix

Design Criteria	Weight	-	ГеkScan (Foot)		ГасtArray	Custom Forearm Sensors		
Accuracy	30	2	12	3	18			
Data Output	25	3	15	3	15			
Usability	20	2	8	4	16			
Cost	15	3	9	1	3			
Safety	10	4	8	4	8			
Total	100		52		62			

Mechanical System

Pneumatic System

Modular Fracture Design Matrix

Design Criteria	Weight	Bands			eumatic System	Mechanical System		
Resistance Variability	30	2	12	5	30	4	25	
Usability	25	2	10	4	20	3	15	
Manufacturability	25	4	20	3	15	3	15	
Cost	10	5	10	3	6	4	8	
Safety	10	4	8	4	8	4 8		
Total	100	60			77	71		

Final Design

- Pneumatic system for different resistances for bone fracture
- Use two bones made of PVC with 0.5" diameter

Improve software-user interface to show pressure during

casting

- Move fracture to distal
- Custom forearm pressure mapping system

Custom pressure mapping sytem http://www.sensorprod.com/news/pr/2008-04_foodmarketing/image01.jpg

Future Work

- Purchase PVC pipe
- Explore custom forearm pressure system
- Develop pneumatic system to control fracture
- Recreate Platsil forearm representation
- Testing of pressure and alignment system
- Develop protective sleeve
- Integrate software into one user display
- Residents test device

Future Work

Tasks 6	September			October			November					Dec		
	6	13	20	27	4	11	18	25	1	8	15	22	29	6
Background Info	X	X	X	X	X									
Design Alternatives				X	X									
Final Design						X								
Materials						X	X	X						
Construction							X	X	X	X	X			
Testing											X	X	X	X
Mid-Semester					X									
Final														X
Mid-Semester Report					X									
Final Report														X

Acknowledgements

- Dr. Matt Halanski
- Professor Mitchell Tyler
- Gabe Bautista
- Dr. John Kao
- Professor Tom Yen

References

- POSNA. (2010, January). Forearm fractures in children. Retrieved from http://orthoinfo.aaos.org/topic.cfm? topic=a00039
- Wright, M. (2010, July 16). Forearm injuries and fractures. Retrieved from http://www.patient.co.uk/doctor/Forearm-Injuries-and-Fractures.htm
- Wheeless, C. (2013, August 29). Pediatric both bone forearm fractures. Retrieved from http://www.wheelessonline.com/ ortho/pediatric_both_bone_forearm_fractures
- Bernstein, R. (n.d.). Pediatric forearm and distal radius fractures. Retrieved from http://www.togct.com/downloads/ bernstein/Pediatric-Forearm-Fractures.pdf