# Sleep Apnea Therapy Device

William Guns, Calvin Hedberg, Tanya Iskandar, Aman Nihal, John Riley



http://www.thecpapshop.com/fisher-paykel-simplu s-full-face-mask-with-headgear



http://www.webmd.com/sleep-disorders/sleep-apnea/

#### **Overview**

- I. Problem Statement
- II. Background Information
- III. Project Design Specifications
- IV. Design Alternatives
- V. Design Matrix
- VI. Future Work
- VII. Acknowledgments
- VIII. References

#### Problem Statement

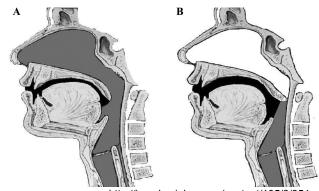
- Sleep Apnea is a sleep disorder in which natural breathing stops during sleep
  - Frequent waking often prevents those afflicted from reaching deep sleep
- Current treatments are bulky, loud, uncomfortable, and primarily designed for Obstructive Sleep Apnea
  - Face high rejection rate from users
- Our client, Dr. John Webster, has tasked us with creating a light, quiet, and comfortable sleep apnea treatment using the variable dead space technique developed in his lab.

# Background Information

- Sleep apnea
  - An inability to reach deep sleep caused by frequent interruptions in breathing (Young, et al, 2002)
  - Affects roughly 10% of the US population (Young, et al, 2013)

- 3 Primary types
  - OSA, CSA, and combination (Morgenthal, et al, 2006)

# Background Information (Cont.)


- Current Treatment: CPAP (Constant Positive Air Pressure)
  - Discomfort, dryness, congestion, and pain
  - Up to 50% user rejection rate (Catcheside 2010)
- Potential treatment: "Smart CO<sub>2</sub>" Device
  - Increase patient CO<sub>2</sub> intake

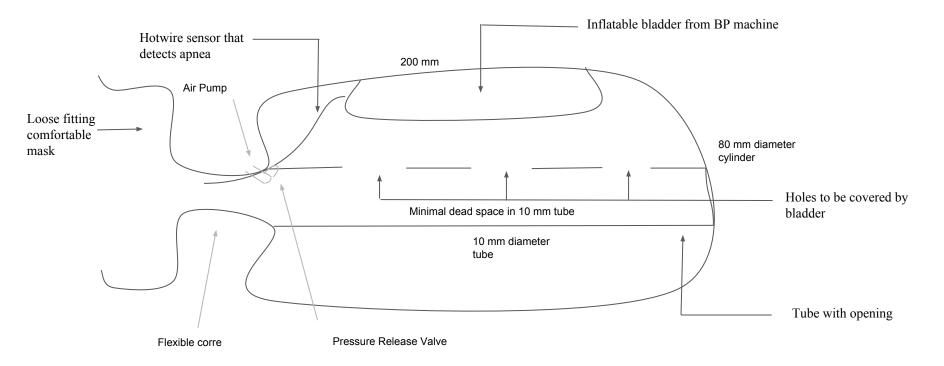


https://upload.wikimedia.org/wikipedia/commons/7/7f/CPAP.png

# Background Information (Cont.)

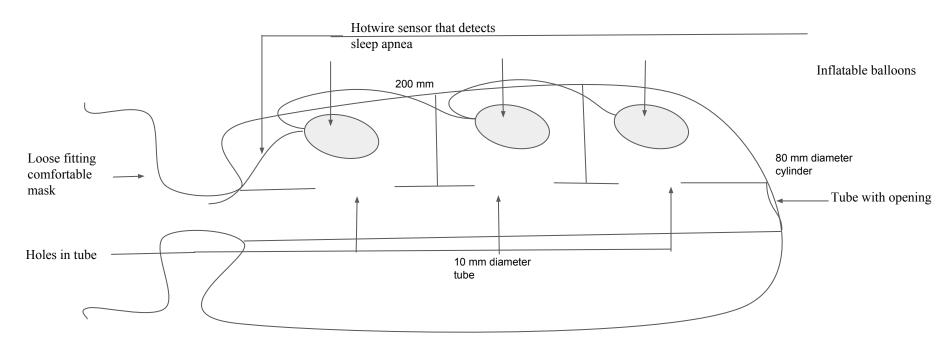
- Increasing dead space increases CO<sub>2</sub> intake
  - Inducing mild hypercapnia improves ventilatory stimulation
  - Improves CSA symptoms (Dempsey, 1985)
- Device designed to automatically control dead space
  - Optimized for minimal apnea occurrence and CO<sub>2</sub> levels




http://jap.physiology.org/content/105/3/854

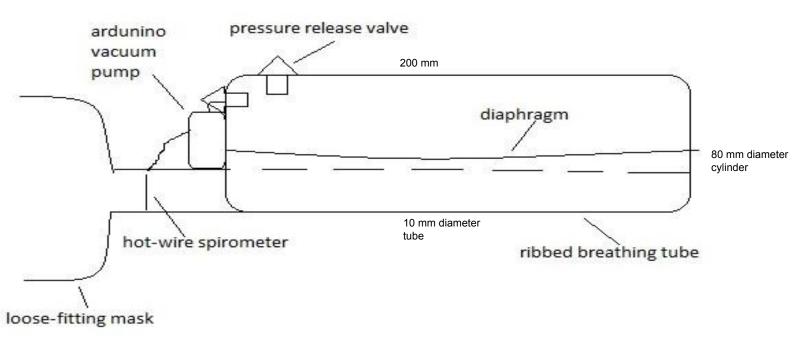
# Product Design Specifications - Summary

- Lightweight (under 1 kg)
- Compact (80mm diameter and 200mm length) and circular
- Comfortable application of mask to the face and device to the chest
- Battery Operated
- Durable (3-4 months for 8-10 hours per day)
- \$100 budget

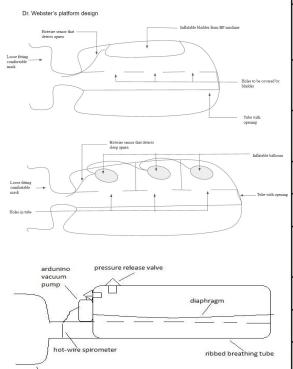

# Design Alternatives

#### Dr. Webster's platform design




# Design Alternatives (Cont.)

#### **Design Alternative: Sectioned-off Balloons**




# Design Alternatives (Cont.)

#### **Design Alternative: Diaphragm**



# Design Matrix



loose-fitting mask

|                                | Design A*                         | Design B*               | Design C*                 |
|--------------------------------|-----------------------------------|-------------------------|---------------------------|
| Brief Description              | Prof. Webster's<br>Design         | Balloon<br>Modification | Diaphragm<br>Modification |
| Dead Space<br>Variability (15) | (3/5) 9 (or 15, testing required) | (5/5) 15                | (4/5) 12                  |
| Ease of Fabrication (15)       | (5/5) 15                          | (2/5) 6                 | (3/5) 9                   |
| Safety (10)                    | (5/5) 10                          | (5/5) 10                | (5/5) 10                  |
| Weight (10)                    | (5/5) 10                          | (4/5) 8                 | (5/5) 10                  |
| Power Consumption (5)          | (4/5) 4                           | (5/5) 5                 | (3/5) 3                   |
| Durability (15)                | (5/5) 15                          | (3/5) 9                 | (3/5) 9                   |
| Comfort (15)                   | (5/5) 15                          | (5/5) 15                | (5/5) 15                  |
| Cost (15)                      | (5/5) 15                          | (2/5) 6                 | (3/5) 9                   |
| Total Value                    | 93                                | 71                      | 77                        |

#### Future Work

- Decisions must be made regarding the specific parts to be used
  - Plastic tubing, hotwire sensor, container
  - Sphygmomanometer for inflatable air bladder and pump
- Ordering of parts not available in the BME labs
  - Parts from labs will be used with consent from Professor Webster and Mehdi
     Shokoueinejad
  - Budget: \$100
- Testing of the efficacy of the device is the end goal

#### Future Work (Cont.)

- Programming the variable dead space system
  - Arduino micro-controller
  - LabVIEW software
- Developing an algorithm to detect apnea
  - Hot wire cooling rate calibration
  - Normal breathing
  - Apnea/shallow breathing (threshold)

#### Acknowledgments

We would like to thank our client, Dr. John Webster, and our advisor,
 Professor Jeremy Rogers, as well as Mehdi Shokoueinejad for their assistance and involvement with the project.

#### References

- 1. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217-1239
- 2. Gottlieb DJ, Yenokyan G, Newman AB, O'Connor GT, Punjabi NM, Quan SF, Redline S, Resnick HE, Tong EK, Diener-West M (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure the sleep heart health study. Circulation 122:352-360
- 3. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol:kws342
- 4. Morgenthaler TI, Kagramanov V, Hanak V, Decker PA (2006) Complex sleep apnea syndrome: is it a unique clinical syndrome? SLEEP-NEW YORK THEN WESTCHESTER- 29:1203
- 5. White, D.P (1985). Central Sleep Apnea., The medical clinics of North America 69(6):1205-1219
- 6. Catcheside, P. G. (2010). Predictors of continuous positive airway pressure adherence., 2, Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954420/
- 7. Dempsey, J. A., Veasey, S. C., Morgan, B. J., & O'Donnell, C. P. (2010). Pathophysiology of sleep Apnea., 90(1), . Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970937/
- 8.Guyton, A. C., Hall, J. E., & Guyton, J. W. (2010). Guyton and hall textbook of medical physiology: With student consult online access, 12th edition. New Delhi, India: Saunders (2010)
- 9 "Interactive Respiratory Physiology." Johns Hopkins School of Medicine. Johns Hopkins University, 1995. Web. 10 Oct. 2016. http://oac.med.jhmi.edu/res\_phys/Encyclopedia/DeadSpace/DeadSpace.HTML
- 10. Dempsey JA, Xie A, Patz DS, and Wang D. Physiology in medicine: obstructive sleep apnea pathogenesis and treatment--considerations beyond airway anatomy. J Appl Physiol (1985) 116: 3-12, 2014.
- 11. Eckert DJ, White DP, Jordan AS, Malhotra A, and Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188: 996-1004, 2013.
- 12. EZ, S. (2016, September 10). Privacy policy. Retrieved October 14, 2016, from http://snoozeez.com/category/sleep-apnea/cpap/
- 13. Martins, L. (2016, February 16). People who sleep A lot actually have it together. Retrieved October 14, 2016, from https://www.theodysseyonline.com/people-who-sleep-lot-actually-have-it-together