Teaching Model for Ventilation and Perfusion Mismatching

Client: Dr. Chris Green

Advisor: Dr. Amit Nimunkar

Brittany Glaeser, Kaitlin Lacy, Zoe Schmanski, Jenna Eizadi

Outline

- > Introduction
- Background
- Competing Designs
- Design Specifications
- Preliminary Designs
- Design Matrices
- Future Work
- References and Acknowledgements

Introduction

Our client, Dr. Christopher Green, is a pediatric pulmonologist and requested the creation of a model representing the mechanisms underlying ventilation/perfusion (V/Q) mismatching and its various complications, such as hypoxemia and dead space ventilation, to help medical students understand this concept.

Features:

- An alveolus and corresponding bronchiole
- Capillary tube for perfusion
- Multiple ratios (High V/Q to low V/Q)
- Large enough to be seen on a projector of a lecture hall containing at least 180 people

Background

- Air Flow
- Gas exchange occurs in the alveolus [1]
 - Ventilation (V)
 - Perfusion (Q)
- High V/Q
 - Dead space ventilation [2]
- Low V/Q
 - Shunt
- Common diseases can cause mismatching [3]
- Mismatching can lead to hypoxemia [4]

Lung Anatomy [5]

Gas Exchange [6]

Competing Designs

- Water Model
 - Powered Dye (ventilation)
 - Water (blood flow)
 - Concentration (V/Q) [7]
- Circ-Adapt
 - Computational (online) model of heart and circulation
 - Adjustable parameters
 - Focused on cardiac disease [8]

Design Specifications

- Model ventilation/perfusion mismatching within the respiratory system
- Interactive component for the user to change the V/Q ratios
 - Minimum of 5 different ratio settings
- The device should be able to be used multiple times within a lecture
- Large enough for a classroom of 180 people to see with the use of a projector
- Must be able to withstand storage for long periods of time
 - Life in service of at least five years
- Must weigh less than 6.8kg (15 lbs) for easy portability and

1. LED Model

Pros

- Easy Fabrication
- Greater variability with color, shades, and brightness
- Great range of ratios that can easily be differentiated by the user
- Cons
 - No branching of alveoli

2. Bead Model

3. Water Model

Pros

- Easily shows how the air mixes with the blood
- The original design our client recommended

Cons

- Requires a lot of setup/cleanup
- Can be messy
- Would require many moving parts
- Requires a larger system to contain a water reservoir

Closed Water System [9]

Flow Mechanisms Design Matrix

i low McChainsins Design Matrix				
	LEDS	BEADS	DYE	

35

30

12

8

3

4

92

3/5

4/5

3/5

4/5

4/5

3/5

69

21

24

9

8

3

2/5

1/5

2/5

2/5

4/5

2/5

36

14

6

6

Effectiveness (35)

(Competency)

Viability (10)

Safety (5)

Cost (5)

Total (100)

Ease of Use (30)

Ease of Fabrication (15)

5/5

5/5

4/5

4/5

3/5

4/5

LED Flow Models

- Original individual LED-lined model
 - Lack of flow representation
- Implanted string of LEDs inside tubing
 - Synchronous activity
 - Refraction of light for flow representation
- 3. LEDs submerged in water
 - Flow representation

LED Mechanism Design Matrix

LLD McChainsin Design Matri				
	Diffused LEDs	LEDs + Water	(
		N A		

35

30

12

8

3

4

92

Diffused LEDs

Effectiveness (35)

(Competency)

Viability (10)

Safety (5)

Cost (5)

Total (100)

Ease of Use (30)

Ease of Fabrication (15)

5/5

5/5

4/5

4/5

3/5

4/5

35

25

9

8

3

84

5/5

4/5

3/5

4/5

4/5

3/5

21

30

9

8

4

3/5

5/5

3/5

4/5

4/5

2/5

74

Future Work

- Confirm final design with the client
- Determine materials to begin ordering
- Fabrication plan
 - 3D printing
 - **Electronics**
 - Code

Acknowledgements

We would like to thank...

Our advisor: Dr. Amit Nimunkar

Our client: Dr. Chris Green

The BME faculty and staff!

References

- [1] E. P. Widmaier, A. J. Vander, H. Raff, and K. T. Strang, Vanders human physiology: the mechanisms of body function, Fifteenth. New York: McGraw-Hill Education, 2019.
- [2] S. Intagliata, W. G. Gossman, and A. Rizzo, "Physiology, Lung Dead Space." 15-May-2019.
- [3] Karius, D., 2020. Ventilation-Perfusion Relationships. [online] Courses.kcumb.edu.
- [4] Sarkar, M., Niranjan, N. and Banyal, P., 2017. Mechanisms of hypoxemia. Lung India, 34(1), p.47.
- [5] Sites.google.com. 2020. The Respiratory System WHS Physics (Old Site). [online]
- [6] Shutterstock.com. 2020. Alveolus Gas Exchange Pulmonary Alveolus Alveoli Stock Vector (Royalty Free) 239128069. [online]
- [7] West's Pulmonary Physiology, Tenth Edition, John B. West and Andrew Luks, Wolters Kluwer, 2016, pp 70-71.
- [8] W.Dassen et al., "The application of complex research simulation models in education; A generic approach," 2011 Computing in Cardiology, Hangzhou, pp.465-468.
- [9] Industries, A., 2020. Adafruit Neopixel Digital RGBW LED Strip White PCB 60 LED/M. [online] Adafruit.com.
- [10] Johnson, H., 2010. Water Analogy. [online] Sigcon.com.
- [11] Amazon.com. 2020. 5mm LED Light Diodes Circuit Assorted Kit. [online]
- [12] YouTube. 2013. Bending of Light. Laser Beam demonstration. [online]
- [13] Environmental Lights. 2020. Flexible Diffusing Sleeve for LED Strip Light. [online]