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Figure 1: Cell Culture Plates [1]
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Background Information

e Client: Dr. John Puccinelli; Associate Chair of the Undergraduate Program
e Cell Cultures
o Lab method for the use of studying cell biology, replicating disease mechanisms, and
investigating drug compounds [2]
o Use both primary, transformed, and self-renewing cells
e Incubators
o Replicate cells’ natural conditions in order for optimal growth
- Natural Cell Environment - 37°C, pH = 7.2-7.4, 95% humidity [3] Figure 2: On-stage
o  Cost: $500-$40,000 [4] incubator [4]
Live Cell Imaging sl
o Allows researchers to continually view cell development
o Need incubator on a microscope in order to keep cells alive
forimaging
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Problem Statement

% Purpose: Develop a low cost cell culture incubation
chamber that fits on a microscope stand
(<3120x300x45mm), does not interfere with the lens optics,
and is capable of live cell imaging.

Y

% Current commercially available systems

> Sometimes result in evaporation from low
volume cultures

> Expensive, too large, Enclose the entire

microscope
> Previous BME 200/300 design projects
> Portable Live-cell Imaging Box ~ $400

Figure 3: Cell Culture Procedure [5]

materials
> Elliot Scientific and OkoLabs Stage Top
Incubators[4] ~ $400-$1,000
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(unit: mm)
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Performance requirements:
e Compatible with an inverted microscope in
both size and function

667

"406-471

e Maintain an internal environment of 37°C, : ] 1 &
. o8 A gﬁ
5% CO_, and 95-100% humidity = Ta—
Weight: 16 kg Power consumption: 200 VA
* Lengths with an asterisk (*) vary according to interpupilllary distance
Safety: g () vary g pupilliary

Figure 4: Measurements of Inverted
e Biosafety Level 1 Standards [6] Microscope [7]

Accuracy and Reliability:

e Temperature of 37°C + 1°C, humidity of >95%, and CO_ levels of 5% + 1%
e Maintain internal environment for at least 1 week
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PDS Summary cont.

Size:

® Incubator < 310x300 mm with
a thickness < 45 mm

Materials:
® Transparent top and bottom
surfaces
Target Production Cost:
Figure 5: Portable Live-Cell
o < $100 Imaging Platform [8]

Figure 6: Elliot Scientific Stage
Top Incubator [9]




Spring 2022 Work

Fabrication

e Laser cut black acrylic
from UW-Makerspace

e Thermistor was used
for temperature and
humidity

e NDIRCO_ Sensorused
for CO_ percentage
reading

Dimensions: mm

Figure 7: Final Protbtype CAD drawing

Figure 9: Thermistor Circuit
Diagram

Figure 10: CO, Circuit Diagram
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Spring 2022 Testing

Sensor Temperature
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were successful

Figure 13: Recovery testing results.
e Optical testing was

Figure 11: Temperature sensing results

Optical Anaylsi
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e Develop best way to

® Microscope Image with Glass ® Microscope Image without Glass

regulate CO2 input Figure 12: Humidity sensor results

Figure 14: Optical testing results
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Preliminary Design #1
Solenoid Valve

Strengths:
e No Fabrication
e Electrically controlled

e No leaks
Weaknesses:
e C(Costs Figure 15: Image of the solenoid valve [10]

® Powersource
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Preliminary Design #2
Threaded Pin Valve

Strengths:
o (Costs P
e Safety

Weaknesses:
e |eakage y
e Accuracy |

Figure 16: Drawing of the threaded pin valve design
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Preliminary Design #3
Spring Pin Valve

Strengths:

® Fastclosing response time P, —1_
e Homemade

Weaknesses:

e Complex
e leakage

Figure 17: Drawing of the spring pin valve design
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Design Matrix Criteria

Accuracy and Reliability: Accuracy of CO2 input control

Cost: What is the cheapest, but most reliable design?
Ease of Use: Circuitry and coding control
Fabrication: How easy is it to build?

Life in Service: How long until device is not reliable?
Safety

LSSy e
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Figure 18: Images of Preliminary Designs #1-3
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.
Design Matrix for CO2 Input Regulation

i s e a
4 !
[\ | H
Solenoid Valve Threaded Pin Valve Spring Pin Valve
Score Weighted Score Weighted Score Weighted
Rank Criteria Weight (5 max) Score (5 max) Score (5 max) Score
1 Accuracy and Reliability 30 5 30 3 18 4 24
2 Cost 20 3 12 4 16 4 16
3 Ease of use 20 5 20 3 12 2 8
4 Fabrication 15 5 15 3 9 2 6
5 Life in Service 10 4 8 1 2 2 4
6 Safety 5 4 4 5 5 5 5
Sum 100 Sum i Sum 62 Sum 63




Proposed Final Design

Design #1

Easiest setup

No fabrication of the valve
Most reliable CO2 input
regulation via Arduino

0

Figure 19: Image of the Solenoid valve that will be used
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Cell Confluency Test - Control

12

Current Work

® Anti Fog Testing _________________________ -
e Cell Confluency Testing P
. SOlenOid CirCUitry OO 10 20 30 40 50 60 70 80
Time (hours)
Figure 20: Solenoid Circuit Setup Figure 21: Cell Confluency Test - Control

Future Work

® (CO2input testing

e Incubator Homogeneity
Testing

e Live cell testing

Figure 22: Control Cells Day o Figure 23: Control Cells Day 3
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Upcoming Project Goals

¢ Purchase Materials ¢ Begin Prototyping ¢ Final Deliverables

Present Wednesday, November 2nd Wednesday, December 14th
® ®
Test Materials Test Prototype
Wednesday, October 12th Wednesday, November 23rd
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Dr. John Puccinelli
Dr. Amit Nimunkar
BME Department
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Questions?




