

Preliminary Presentation 3D Printing Airway Trainers

Team Members: Jack Sperling, Maribel Glodowski, Ilia Mikhailenko, Maiwand Tarazi, Nathan Klauck, and Elle Heimer

Client: Dr. Kristopher Schroeder

Department of Anesthesia,

UW-Health

Advisor: Dr. John Puccinelli

Problem Statement

Client: Dr. Kristopher Schroeder

Problem #1: Most trainers do not replicate

patient-specific pathology

Problem #2: Existing trainers are highly expensive

Figure 1: Ambu Airway Trainer
[1]
https://www.ambu.com

Goal:

Create an affordable and patient-specific airway trainer.

Background Material

- Airway management is a critical medical procedure
- 400,000 annual emergency intubations [2]
- 12.7% of intubations are initially unsuccessful [2]
- Procurement of trainers is inefficient
- 3D-printing is an alternative

Figure 2: Laerdal Trainer
[3]
https://theemssuperstore.com

Competing Designs

- Laerdal Airway Trainer [4]
 - Gold standard
 - Representative of standard anatomy
 - Durable
 - Multiple procedures possible
 - ~\$3000
- Decent Simulators [5]
 - Adjustable difficulty, based on true anatomy
 - ~\$1800
- TruCorp [6]
 - Difficult airway anatomy and some realistic pathology
 - Adjustable levels of edema and obstruction
 - ~\$6000

Figure 3: Laerdal Trainer [4]

Figure 4: Decent Simulators Trainer [5]

Figure 5: AirSim Difficult Trainer [6]

Product Design Specifications

- Imaging-based, patient specific difficult anatomy
 - Subglottic stenosis, Sublingual tonsils
 - Practice before operation, if possible
 - Serve as training after
- Resemble human airway biomechanics
 - Shore Hardness of 50 80A [7]
 - Young's Modulus of 16 MPa ∓ 8 MPa [8]
- Simulate variety of airway procedures
 - Top priority: Intubation
 - Oropharyngeal and Nasopharyngeal airways
- \$750 budget

Figure 6: Coronal plane MRI of patient with venous malformation [9]

https://compya.co

Figure 7: Example airway procedures

Method 1: Commercial Difficult Airway Trainers

Figure 8: TruCorp Airsim Difficult Airway Trainer [11]

https://trucorp.com

Figure 9: Simulated Laryngospasm, sudden closure of vocal cords [11]

https://trucorp.com

Advantages

- Range of difficult airway pathologies
- Airway simulations

Disadvantages

- Price \$6000 [11]
- Lacks patient-specific pathology
- Made of latex

Method 2: Modification to TruCorp Airsim Airway Trainer

Figure 11: Modular airway trainer with replaceable difficult airways

Advantages

- Rotation of patient-specific pathologies
- Use of high-quality frame

Disadvantages

- Cost
- Lack of epiglottis mobility

Method 3: 3D Printed Modular Airway With Patient

stenosis

Specific Anatomy

Main steps:

subglottic stenosis

- 1. Segment patient-specific imaging
- 2. Refine .stl file
- 3. 3D print airway or mold
- Design framework incorporating additional related anatomy

Advantages

- Low cost: \$105 USD [13]
- Patient-specific pathology
- Possibility of pre-operative training

Disadvantages

- Imaging contains protected personal health information [14]
- Requires deidentified patient imaging
- Less procedural versatility

Maribel

Design Matrix: Methods		Design Commercial Difficult Airway Trainers		Modifications to Existing Trainers		3D Printed Modular Airway with Patient-Specific Anatomy			
			Figure 8: TruCorp AirSim Difficult Airway [11]						
					Figure 11: Modular airway trainer		Figure 12: Patient specific airway		
		Physiological Accuracy (25)	4/5	20	3/5	15	5/5	25	
		Complexity (20)	4/5	16	2/5	8	3/5	12	
		Cost (20)	2/5	8	1/5	4	5/5	20	
	Figure 13: Methods Design Matrix	Ease of Use (15)	4/5	12	2/5	6	3/5	9	
		Versatility (10)	2/5	4	3/5	6	4/5	8	
		Durability (10)	4/5	8	2/5	4	3/5	6	
Maribel		Total (100)	70/100		41/100		80/100		

Design Matrix: Materials

	Design Criteria	Material #1: Silicone 3D Printed Resin 60-75A, ~2 MPa		For	Material #2: mlabs 80A Resin 80 A, ~4 MPa	Material #3: Liquid Silicone		
	Biomechanical Properties (25)	3/5	15	4/5	20	2/5	10	
-	Durability (20)	3/5	12	3/5	12	2/5	8	
	Ease of Fabrication (20)	4/5	16	4/5	16	2/5	8	
	Reliability (15)	4/5	12	5/5	15	3/5	9	
	Cost (10)	4/5	8	2/5	4	3/5	6	
	Compatibility with Training Materials (10)	2/5	4	4/5	8	2/5	4	
	Total (100)	67/100			75/100	45/100		

Figure 14: Materials Design Matrix

Nathan

Future Work

- Development
 - Material property testing
 - DICOM files
- Testing
 - Final design properties: Shore Hardness (50-80A) and Young's Modulus (16 MPa ∓ 8 MPa) [7,8]
 - Perform test procedures: Max 45 seconds [15]
 - Image vs model accuracy

Figure 15: Shore Hardness Test (A on Left, D on Right)
[16]

Acknowledgements

- BME Department
- Dr. Kristopher Schroeder
- Dr. John Puccinelli
- Srihari Gopalan

References

- [1] Ambu® Airway Management Trainer. https://www.ambu.com/emergency-care-and-training/training-manikins/product/ambu-airway-management-trainer. Accessed 2 Oct. 2024.
- [2] Maguire, Samantha, et al. "Endotracheal Intubation of Difficult Airways in Emergency Settings: A Guide for Innovators." Medical Devices (Auckland, N.Z.), vol. 16, July 2023, pp. 183–99. PubMed Central, https://doi.org/10.2147/MDER.S419715.
- [3] "Deluxe Difficult Airway Trainer." EMS Superstore, https://theemssuperstore.com/product/deluxe-difficult-airway-trainer/. Accessed 2 Oct. 2024.
- [4] "Airway Management Trainer," Laerdal Medical. Accessed: Oct. 02, 2024. [Online]. Available: https://laerdal.com/us/products/skills-proficiency/airway-management-trainers/laerdal-airway-management-trainer.
- [5] "Airway management," Decent Simulators. Accessed: Oct. 02, 2024. [Online]. Available: https://www.decentsimulators.com/airway-management
- [6] "AirSim Difficult Airway with Bronchi," Trucorp. Accessed: Oct. 02, 2024. [Online]. Available: https://trucorp.com/en/produto/airsim-difficult-airway-with-bronchi/
- [7] T. Agbiki et al., "Fabrication and assessment of a bio-inspired synthetic tracheal tissue model for tracheal tube cuff leakage testing," BJA Open, vol. 10, p. 100290, Jun. 2024. doi:10.1016/j.bjao.2024.100290
- [8] F. Safshekan, M. Tafazzoli-Shadpour, M. Abdouss, and M. B. Shadmehr, "Mechanical Characterization and Constitutive Modeling of Human Trachea: Age and Gender Dependency," Materials (Basel), vol. 9, no. 6, p. 456, Jun. 2016. doi: 10.3390/ma9060456.
- [9]"Compva: Special features of anesthesia: the difficult airway." Accessed: Oct. 02, 2024. [Online]. Available: https://www.compva.com/science/special-features-of-anesthesia-the-difficult-airway
- [10] seo-user, "Understanding Airway Management Devices and How They Differ," Molded Devices Inc. Accessed: Oct. 02, 2024. [Online]. Available: https://www.moldeddevices.com/2022/06/13/understanding-airway-management-devices-and-how-they-differ/
- [11]"AirSim Difficult Airway with Bronchi," Trucorp. Accessed: Oct. 02, 2024. [Online]. Available: https://trucorp.com/en/produto/airsim-difficult-airway-with-bronchi/
- [12]"AirSim: Adult Airway Training by TruCorp," Trucorp. Accessed: Oct. 03, 2024. [Online]. Available: https://trucorp.com/en/product/airsim/
- [13] B. H. K. Ho et al., "Multi-material three dimensional printed models for simulation of bronchoscopy BMC Medical Education," BioMed Central, https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-019-1677-9
- [14] O. for C. R. (OCR), "2059-do individuals have a right under HIPAA to get copies of their X-rays or other diagnostic images, and if so, in what format?," HHS.gov, https://www.hhs.gov/hipaa/for-professionals/faq/2059/do-individuals-have-a-right-under-hipaa-to-get-copies/index.html
- [15] C. Vincent-Lambert and R. Loftus, "Time taken to perform a rapid sequence intubation within a simulated prehospital environment," Southern African Journal of Critical Care, vol. 35, no. 2, p. 70, Nov. 2019, doi: https://doi.org/10.7196/sajcc.2019.v35i2.368.
- [16] S. W. ISM, "What is Durometer? Elastomer and Plastic Hardness." Accessed: Oct. 04, 2024. [Online]. Available: https://www.industrialspec.com/about-us/blog/detail/what-is-durometer-elastomer-and-plastic-hardness

Thank You! Questions?