

Arterial Coupler Re-Design: Adjustable Stent/Cuff Anastomosis

Team Members:

Ally Rausch (Leader)

Jackie Behring (Communicator)

Daniel Pies (BSAC)

Sofia DeCicco (BWIG)

Arshiya Chugh (BPAG)

Client:

Dr. Jasmine Craig

Plastic Surgery, UW School of Medicine and Public Health

Dr. Weifeng Zeng

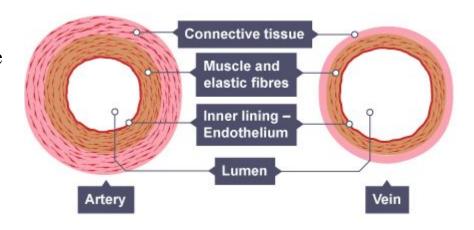
Plastic Surgeon

Advisor:

Darilis Suarez-Gonzalez

Presentation Overview

- > Problem Statement
- Background
- Product Design Specifications
- Design Considerations
- > Final Design
- Testing Plans
- > Future Work
- References and Acknowledgments


Problem Statement

Current Arterial Anastomosis

- 30-60 minutes with high expertise
- Risk of thrombosis, leakage, operation failure
- Existing couplers not suitable for arteries

Refined Aim

- Suture-minimized
- Expandable
- 2 5 mm vessels
- No contact with inner lining
- Overall: Reduce operative time while ensuring patency and biocompatibility

Figure 1: Structural comparison of veins and arteries [1]

Current Arterial Anastomosis Procedure

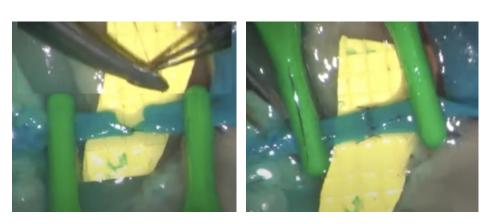
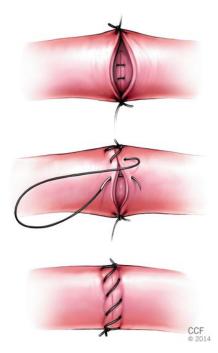



Figure 2: Client provided images of microanastomosis [2]

Method

- Hand suture technique at the millimeter scale
- Total of 6+ sutures depending on vessel and artery size

Figure 3: Suture technique for microanastomosis [3]

Background - Impact

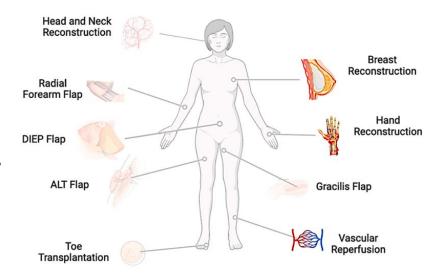
Improve Patient Outcomes

- Faster repair → reduced ischemia times [4]

Clinical Relevance

- Reconstructive, transplant, and trauma surgeries

Efficiency


- Minimize times and complications → minimize costs

Standardize Care

- Reduces variability in procedure and outcomes

Expand Accessibility

- Simplified procedure → less experienced surgeons can execute → quality care to more patients [5]

Figure 4: Potential impacts for sutureless microvascular anastomosis [5]

Background - Current Methods & Designs

Hand Sewn Sutures

- Gold standard, 30-60 minutes [6]
- Demanding and challenging learning curve

Venous Coupler Device

- Reduce time to ~7.5 minutes [6]
- Easy to use, high patency rate [7]
- Not ideal for arteries [8]

Figure 6: GEM Venous Coupler [10]

Figure 5: Venous Coupler Procedure Steps [9]

Background - Current Methods & Designs

Magnetic Compression Anastomosis (MCA)

- Rare earth magnets fuse vessel ends [11]
- Proven in GI procedures [12]
- Misalignment and stenosis risks [13]

External Cuff Methods

- Evert vessel ends over tube
- Risks stenosis, loss of compliance, and thrombosis [14]

Intraluminal Stents / Dissolvable Scaffolds

- Shorten procedure time
- Risks thrombosis and stenosis [15]

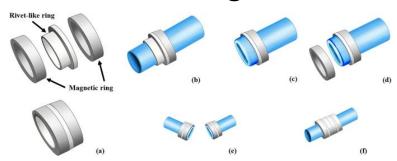


Figure 7: Working mechanism magnetic compression anastomosis [16]

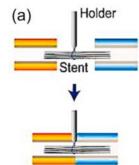


Figure 8: Intraluminal Stent Mechanism [5]

Product Design Specifications

Client Requirements

- Adjustable Can expand or contract with 2-5 mm arteries
- Efficient Procedure completion in < 20 minutes [6]
- Safe Lifelong implant, withstand **160-200 mmHg**
- Sterile Single use, EO sterilization, smooth edges
- Reliable Maintain patency \geq 95% immediately after, \geq 90% after 7 days
- *Usable* Ergonomic, low learning curve for surgeons
- *Materials* Biocompatible metals (316L SS, Nitinol) [17]
- *Cost* Within **\$1,000** budget, benchmark couplers **\$250-\$400** [18]
- Standards Meets **FDA Class II** and ISO requirements

Design 1: Sock Clamp

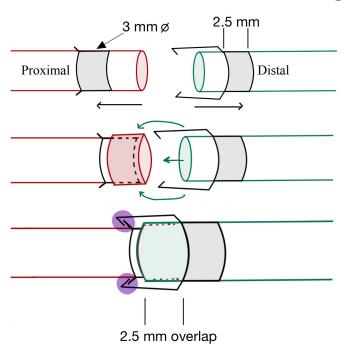


Figure 9: Sock Clamp Design

Pros:

- Sutureless
- Quick arterial connection
- Intima contact

Cons:

- Attachment to both ends
- Non-adjustable
- Clip durability

5 mm 60° 2.5mm Ø

Figure 10: Spike Stent Dimensions

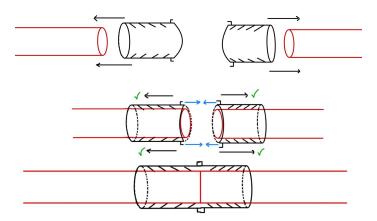


Figure 11: Spike Stent Application

Design 2: Spike Stent

Pros:

- Quick application
- Sutureless
- Low machining and material cost

Cons:

- Potential arterial damage
- Intima contact
- Adjustability
- Attachment to both ends

Design 3: Expandable Nitinol Stent

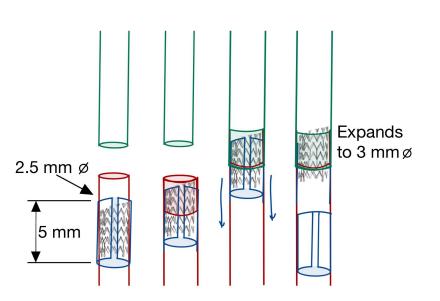


Figure 12: Expandable Nitinol Stent Application

Pros:

- High pressure tolerance
- Adjustable diameter during implantation
- Strong intima-intima contact

Cons:

- Material is more difficult to source and more costly
- Post-deployment adjustability
- Securing suture

Design Matrix Criteria

1. Efficiency

Implant time < 20 second

2. Adjustability

Diameter had ability to expand after implantation

3. Intima Contact

Sufficient contact between inner walls of artery ends

4. Durability

Withstands biological environment

5. Safety

Design geometry avoids risk of harm

6. Manufacturability

Material source and design machinability

7. Cost

Client provided budget is \$1,000

Design Matrix

Arterial Coupler Device							
		Sock Clamp		Spike Stent		Expandable Stent	
Criteria	Weight	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Efficiency	25	3	15	2	10	4	20
Adjustability	20	1	4	1	4	4	16
Intima Contact	15	5	15	2	6	5	15
Durability	15	4	12	3	9	3	9
Safety	10	4	8	2	4	4	8
Manufacturability	10	4	8	3	6	3	6
Cost	5	4	4	4	4	3	3
Total (Out of 100):		66		43		77	

 Table 1: Design Matrix

Final Design: Expandable Stent

Figure 13: Example Nitinol Stent Geometry [19]

Figure 14: Loader Tube Design

Stent Component:

- Nitinol Stent
- OD: 3 mm
- ID: 2.9 mm
- Strut Width: 0.1 mm
- Stent Height: 20 mm

Loader Tude Component:

- PTFE Tubing
- OD: 2.5 mm
- ID: 2.4 mm
- Tubing Width: 0.1 mm
- Tubing Height: 20 mm

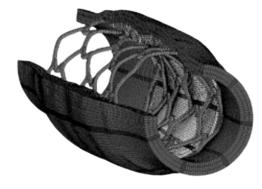
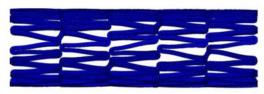
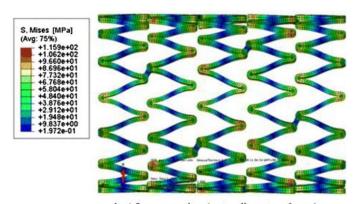



Figure 15: Example Nitinol Stent Geometry [19]



Planned Testing

- Implantation trials on chicken thighs arteries to evaluate usability
- Conduct trials of dyed saline for leakage and patency
- Compare overall implantation time against hand-suturing
- Perform finite element analysis (FEA) to predict stress concentrations and guide design refinement

a. Before expansion (outer diameter: 3 mm)

b. After expansion (outer diameter: 6 mm)

Figure 16: Finite element analysis of the stent before (a) and after (b) expansion [20]

Future Work

- Ensuring a consistent seal ends may be challenging
- Loader tube will require design iterations
- Implantation trials for consistency and reproducibility
- Flow testing to assess durability under long operations
- Biocompatibility of nitinol and PTFE validation
- Surgeon feedback to guide prototype development

Figure 17: Dr. Weifeng Zeng teaching resident anastomosis technique on chicken thigh

Acknowledgements

We would like to thank our clients Dr. Jasmine Craig, Dr. Weifeng Zeng, our advisor Professor Suarez-Gonzalez, and the BME Department!

References

- [1] BBC Bitesize, "Structure and function of blood vessels Structure and function of arteries, capillaries and veins Higher Human Biology Revision," BBC Bitesize, 2021. https://www.bbc.co.uk/bitesize/guides/zvjkbdm/revision/1
- [2] W. Zeng, "2mm vein ETE two-stay method," YouTube, 2023. [Online]. Available: https://www.youtube.com/watch?v=yMw9DOjV9n4
- [3] Arterial and Venous Microanastomosis Models," Plastic Surgery Key. [Online]. Available: https://plasticsurgerykey.com/arterial-and-venous-microanastomosis-models/[Accessed: Oct. 2, 2025].
- [4] A. Chakradhar, J. Mroueh, and S. G. Talbot, "Ischemia Time in Extremity Allotransplantation: A Comprehensive Review," Hand N. Y. N, p. 15589447241287806, Nov. 2024, doi: 10.1177/15589447241287806.
- [5] J. G. Ribaudo et al., "Sutureless vascular anastomotic approaches and their potential impacts," Bioactive Materials, vol. 38, pp. 73–94, Apr. 2024, doi: 10.1016/j.bioactmat.2024.04.003.
- [6] C. Ohayon et al., "Efficiency and outcomes in microvascular anastomosis: A meta-analysis of mechanical versus manual techniques," J. Cranio-Maxillofac. Surg., vol. 53, no. 10, pp. 1720–1730, Oct. 2025, doi: 10.1016/j.jcms.2025.07.015.
- [7] T. T. Mai, L. T. T. Nguyen, and P. D. Nguyen, "Efficiency and safety of microvascular anastomotic coupler for wrist revascularization in traumatic injuries," JPRAS Open, vol. 41, pp. 252–259, Sept. 2024, doi: 10.1016/j.jpra.2024.06.017.
- [8] "Synovis Surgical, a division of Baxter, licenses Arterial Everter transplant surgery technology from U-M," UM Innovation Partnerships. Accessed: Sept. 15, 2025. [Online]. Available: http://innovationpartnerships.umich.edu/stories/synovis-surgical-a-division-of-baxter-licenses-arterial-everter-transplant-surgery-technology-from-u-m/
- [9] Synovis MCA Microsurgery, "Microvascular Anastomotic GEM COUPLER Device Instructions for Use," YouTube, 2023. [Online]. Available: https://www.youtube.com/watch?v=Ssaa0LeOim8 [Accessed: Oct. 2, 2025]
- [10] "Synovis Microsurgery Supplies | Surgeons Trusted Resources." https://www.severnhealthcare.com/products/plastic-and-reconstructive-microsurgery/synovis-mca

References

- [11] M.-M. Zhang et al., "Magnetic compression anastomosis for reconstruction of digestive tract after total gastrectomy in beagle model," World J. Gastrointest. Surg., vol. 15, no. 7, pp. 1294–1303, July 2023, doi: 10.4240/wjgs.v15.i7.1294.
- [12] "Magnamosis | Surgical Innovations." Accessed: Sept. 15, 2025. [Online]. Available: https://surgicalinnovations.ucsf.edu/magnamosis
- [13] T. Kamada et al., "New Technique for Magnetic Compression Anastomosis Without Incision for Gastrointestinal Obstruction," J. Am. Coll. Surg., vol. 232, no. 2, pp. 170-177.e2, Feb. 2021, doi: 10.1016/j.jamcollsurg.2020.10.012.
- [14] D. J. Coleman and M. J. Timmons, "Non-suture external cuff techniques for microvascular anastomosis," Br. J. Plast. Surg., vol. 42, no. 5, pp. 550–555, Sept. 1989, doi: 10.1016/0007-1226(89)90043-X.
- [15] P. Senthil-Kumar et al., "An intraluminal stent facilitates light-activated vascular anastomosis," J. Trauma Acute Care Surg., vol. 83, no. 1 Suppl 1, pp. S43–S49, July 2017, doi: 10.1097/TA.000000000001487.
- [16] Q. Lu, K. Liu, W. Zhang, T. Li, A.-H. Shi, H.-F. Ding, X.-P. Yan, X.-F. Zhang, R.-Q. Wu, Y. Lv, and S.-P. Wang, "End-to-end vascular anastomosis using a novel magnetic compression device in rabbits: a preliminary study," Scientific Reports, vol. 10, Article no. 5981, Apr. 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-62936-6
- [17] F. Hoseini, A. Bellelli, L. Mizzi, F. Pecoraro, and A. Spaggiari, "Self-expanding Nitinol stents for endovascular peripheral applications: A review," Mater. Today Commun., vol. 41, p. 111042, Dec. 2024, doi: 10.1016/j.mtcomm.2024.111042.
- [18] "In-Date Baxter Anastomotic Coupler GEM2752/I box of 1... Synergy SurgicalTM." Accessed: Sept. 15, 2025. [Online]. Available: https://www.synergysurgical.com/product/0-in-date/84-baxter/1714-anastomotic-coupler/46233100-synovis-gem-coupler-2.0mm-GEM2752I/?srsltid=AfmBOordjGQjoG1aP9tu ME-z8lvb0 nGYjxdCnTogz4OpcMpM tDq0Mr
- [19] C. Lally, F. Dolan, and P. J. Prendergast, "Cardiovascular stent design and vessel stresses: a finite element analysis," J. Biomech., vol. 38, no. 8, pp. 1574–1581, 2005, doi: 10.1016/j.jbiomech.2004.07.022.
- [20] Y.-H. Lim and H.-Y. Jeong, "Finite element analyses for improved design of peripheral stents," Computer methods in biomechanics and biomedical engineering, vol. 20, no. 6, pp. 653–662, May 2017, doi: https://doi.org/10.1080/10255842.2017.1286650.

Questions

