

3D Printing Airway Trainers

10/3/25

Dan Altschuler, Lance Johnson, Cody Kryzer, Matt Sheridan, Elle Thom

Client: Dr. Kristopher Schroeder

Advisor: Dr. Paul Campagnola

Overview

3	4	5	6	7		
Problem Statement	Background	Competing Designs	Process	Product Design Specifications		
8	11	12	13	15		
Designs	Design Matrix	Testing	Future Work	References		

Problem Statement

- Standard airway trainers are somewhat limited
- Abnormal airway practice improves patient outcomes
- No established method for printing airways
- Feasible to transform MRI to STL
- Transfer requires an advanced segmentation process
- Incorporate into a fully adjustable manikin

Background

- Dr. Kristopher Schroeder, Department of Anesthesiology
- Clinicians have 15-30 seconds before hypoxia [1]
- 12.7% of intubations fail on the first attempt [1]
- Training directly correlated to patient outcome [2]
- Trainers don't simulate varied endotracheal environments [3]

Figure 1: Intubation Diagram [4]

Competing Designs

- A variety of airway manikins exist
 - Babies
 - Swollen craniofacial structure
 - Burn victims

Figure 2: Laerdal Airway Management Trainer [5]

- Trainers often include just one feature of a difficult airway
 - Modular mandible
 - Adjustable neck
 - Inflatable tongue
 - Induced vomiting
 - Pressure sensitive teeth
- High end trainers can cost \$1,700-3,000 [5]

Figure 3: Decent Simulators [6]

Process

Matt Sheridan 6

Product Design Specifications

- Physiological Accuracy & Material Properties
 - Maintain integrity following 20,000 intubation cycles [7]
 - Match human airway in look and texture
- Rapid adjustability of neck angle, tongue size, and mandible position
- Aim to minimize process cost for marketability
- Printing process should be repeatable in under 48 hours total

Design 1: Blocks

- 3D printed blocks of varying sizes to place under the manikin head
- Contoured to head shape
- Velcro to manikin base for stability
- Quickly swap blocks without tools

Figure 9: Sketch of Blocks Design

Design 2: Flexible Lamp Design

- Similar to a flexible lamp rod
- Adjustable in 3 DOF
- Threaded ends that screw into the top of the neck
- Implement design 1 for stability

Figure 10: Sketch of Flexible Lamp Design

Design 3: Pin Design

- Hinge joint at manikin neck
- Aligned openings on manikin and base
- Only adjustable in the sagittal plane
- No mobility once pin is inserted

Figure 11: Sketch of Pin Design

Design Matrix

Design Criteria (Weight)	Design 1: Blocks		Design 2: Flexible Lamp Design		Design 3: Pin Design	
Ease of Use (20)	4/5	16	5/5	20	4/5	16
Stability (20)	2/5	8	2/5	8	5/5	20
Durability (15)	5/5	15	3/5	9	5/5	15
Precision (15)	3/5	9	5/5	15	3/5	9
Ease of Fabrication (10)	5/5	10	4/5	8	3/5	6
Cost (10)	5/5	10	5/5	10	2/5	4
Safety (10)	5/5	10	5/5	10	4/5	8
Total Score (100) 78		80		78		

Table 1: Design Matrix

Testing

- Puncture resistance test
- Neck modulation durability test
- Time to adjust manikin
 - Swap airways
 - Adjust neck/mandible position
- Time for intubation with 3D printed airway
 - Compare professionals of varying abilities
 - Use existing models as a control group

Future Work

- Test software to optimize segmentation
- Make airway manikin modular/adjustable
 - Create manikin shell
 - Inflatable tongue, allowing for size variation
 - Adjustable mandible position (overbite, small mouth opening, etc.)
 - Pivoting neck
 - Allow for removal and replacement of 3D print

Acknowledgements

We would like to thank ...

- Dr. Kristopher Schroeder
- Dr. Karl Vigen
- Dr. Chris Brace
- Dr. Sylvana Garcia-Rodriguez

- Dr. Paul Campagnola
- Dr. Beth Meyerand
- Anchal Dhawan
- Abbylee Maeder

References

[1] S. Maguire, P. R. Schmitt, E. Sternlicht, and C. M. Kofron, "Endotracheal Intubation of Difficult Airways in Emergency Settings: A Guide for Innovators," Medical Devices: Evidence and Research, vol. Volume 16, pp. 183–199, Jul. 2023, doi: https://doi.org/10.2147/mder.s419715.

[2] P. F. Fouche, P. M. Middleton, and K. M. Zverinova, "Training and experience are more important than the type of practitioner for intubation success," Critical Care, vol. 17, no. 1, p. 412, 2013, doi: https://doi.org/10.1186/cc11924.

[3] B. A. Traylor and A. McCutchan, "Unanticipated Difficult Intubation In An Adult Patient," PubMed, 2021. https://www.ncbi.nlm.nih.gov/books/NBK572134/

[4] What Is Intubation and Why Is It Done?," Verywell Health. Accessed: Feb. 20, 2025. [Online]. Available: https://www.verywellhealth.com/what-is-intubation-and-why-is-it-done-3157102

[5]"Laerdal Airway Management Trainer," Laerdal Medical. https://laerdal.com/us/products/skills-proficiency/airway-management-trainers/laerdal-airway-management-trainer/

[6] Decent Simulators, "The V2 Airway Management Task Trainer makes swapping airways quick and simple.," Linkedin.com, Aug. 25, 2025.

https://www.linkedin.com/posts/decentsimulators_medicaltraining-healthcaresimulation-medicalsimulation-ugcPost-736563 9250169577472-mOsU?utm_medium=ios_app&rcm=ACoAAAxyOrcB60Ebkf26iFa4zRw2dFt86bSQyIs&utm_source=social_s hare_send&utm_campaign=copy_link

[7] F. Safshekan, M. Tafazzoli-Shadpour, M. Abdouss, and M. B. Shadmehr, "Mechanical Characterization and Constitutive Modeling of Human Trachea: Age and Gender Dependency," Materials (Basel), vol. 9, no. 6, p. 456, Jun. 2016, doi: 10.3390/ma9060456.

