

Preliminary Presentation Digital Traction Device with Japanese Finger Traps

Team Members: Ben Willihnganz, Ilia Mikhailenko, Mariamawit

Tefera, Nathan Hansen, Nathan Klauck, Sam Dudek

Client: Mr. Pape Samb

Advisor: Prof. Justin Williams

Background Material

- Traction systems needed for many procedures
- Two parts of the design included
- Stable traction and static load
- Hand injuries have a substantial share of workplace injuries in Dakar, Senegal (~30%) [1]

Figure 1: Wrist Arthroscopy
Procedure [2]
https://www.aptivahealth.com/wrist-surgery

Problem Statement

Client: Mr. Pape Samb and Dr. Mohamed Soumah

Problem #1: No existing traction device available in clients hospital

Problem #2: Lack of a modern, reusable tool for digital traction

Goal:

Develop a locally manufacturable, adaptable traction system

Figure 2: Wrist Traction Tower [3] https://www.swmedsource.com/traction-ninger-traps.htm

Competing Designs

- Reison [4]
 - Stable and adjustable
 - Static and heavy
- Chinese Finger Traps [5]
 - Simple, gravity-based
 - Not readily available
- Handmade Traction Tower [6]
 - Adjustable rods
 - Large and metal
 - Foam-padding

Figure 3: Reison Hand traction [4] https://reison.se/product/hand-fixation/

Figure 5: Hook-and-Trumpf [6]

Figure 4: Chinese finger traps [5] https://pmc.ncbi.nlm.nih.gov/artaicles/PMC4098593/

Product Design Specifications

- Stabilize hand and wrist position
- Support patient's hand for **50 minute** procedures
- Avoid excessive finger compression
- Support **22–44 N** per finger for **500** cases
- Contain adjustable sleeve sizes
- Allow for sterilizability through 100,000 load cycles

Figure 6:
Commonly-used finger
sleeve and traction [7]
https://pmc.ncbi.nlm.nih.gov/artic-les/PMC4098593/

Method 1: Standing Platform

Advantages

- High mobility and adaptability
- Individualized traction control
- Potential digital integration

Disadvantages

- Higher cost of production
- Large physical footprint
- Stability concerns

Platform Design

Method 2: Bed Clamp & Restraint

Advantages

- Bed-mounted stability
- Slim profile
- Comfort and support

Disadvantages

- Restricted mobility
- Increased setup time

Nathan H

Figure 8: Bed

Clamp & Restraint Design

7

Method 3: Extension Brace

Figure 9: Extension Brace Design

Advantages

- Enhanced patient comfort
- Reduced joint strain
- Compact system

Disadvantages

- Procedural adaptations required
- Restricted accessibility
- Difficult sterilization

Design Matrix: Mechanical

Design Criteria	Standing Platform		Bed Clamp & Restraint		Extension Brace	
Ease of use (25)	4/5	20	5/5	25	3/5	15
Cost (20)	4/5	16	5/5	20	2/5	8
Reusability (15)	4/5	12	5/5	15	2/5	8
Safety (15)	3/5	9	4/5	12	5/5	15
Ease of Fabrication (15)	4/5	12	5/5	15	2/5	6
Versatility (10)	4/5	8	3/5	6	2/5	4
Total (100)	77/100		93/100		56/100	

Figure 10: Mechanical Design Matrix

Method 1: Nylon Sleeve

Advantages

- Ease of application to finger
- High client familiarity

Disadvantage

- Difficult to fabricate
- Requires multiple sizes
- High material cost ~ \$50 [8]

2 ± 1 cm

Method 2: Hand Brace

Advantages

- Complete hand immobilization
- Sterilizability for reuse
- Similar to current product

Disadvantages

- No direct finger attachment
- Incompatible for certain surgeries

Ben

Method 3: Buckle and Strap

Figure 12: Buckle and Strap Design

Advantages

- One size fits all
- Highest adjustability
- Straight-forward fabrication

Disadvantages

- Inefficient finger straps
- Low client familiarity

Design Matrix: Finger Sleeve

Figure 14: Finger Sleeve Design Matrix

Future Work

- Material Choice
 - Cost
 - Available options
 - Reusability

- Construction
 - Mechanical Portion
 - Sleeve Portion
 - Combination

- Testing
 - Force Range
 - Slippage

14

Acknowledgements

- BME Department
- Mr. Samb
- Dr. Justin Williams

References

- [1] S. A. Dia et al., "Caractéristiques des accidents du travail et devenir des victimes: à propos de 133 cas déclarés auprès de la Caisse de Sécurité Sociale de Dakar (Sénégal)," Pan Afr Med J, vol. 30, p. 156, June 2018, doi: 10.11604/pamj.2018.30.156.10517.
- [2] "Wrist Arthroscopy," Aptiva Health. Accessed: Oct. 02, 2025. [Online]. Available: https://www.aptivahealth.com/wrist-surgery
- [3] "Surgical Finger Traps | Non-Sterile Finger Traps | SW Med-Source." Accessed: Oct. 02, 2025. [Online]. Available: https://www.swmedsource.com/traction_finger_traps.htm
- [4] "Hand Fixation" Reison Medical®," Reison Medical, Apr. 08, 2025. https://reison.se/product/hand-fixation/ (accessed Sep. 30, 2025).
- [5] K. Akhtar, D. Akhtar, and J. Simmons, "A readily available alternative to Chinese finger traps for fracture reduction," Royal College of Surgeons of England, https://publishing.rcseng.ac.uk/doi/full/10.1308/rcsann.2013.95.2.159 (accessed Sep. 9, 2025).
- [6] A. Zolotov, "Handmade Traction Wrist Tower," J Wrist Surg, vol. 7, no. 5, pp. 441–444, Nov. 2018, doi: 10.1055/s-0038-1649504.
- [7] BSUH Hand Service, "How to Reduce and Hold a Distal Radius Fracture Using Finger Traps," *YouTube*, Mar. 23, 2019. https://www.youtube.com/watch?v=9QFZzajwiqI (accessed Sep. 30, 2025)
- [8] "Techflex® nylon multifilament braided cable sleeving," Cabletiesandmore.com Cable Management At The Lowest Prices, https://www.cabletiesandmore.com/nylon-multifilament-braided-sleeving?pid=3908&gad_source=1&gad_campaignid=1768785984&gbraid=0AAAAADfXKhiliBkRM33RoUz23C4rniWS2&gclid=CjwKCAjwxfjGBhAUEiwAKWPwDlY5OgPutgXrGCwy5KC4Gujc5Cwht_ZyNzBlLTJewyJrX4zlUwLyORoCLCsQAvD_BwE (accessed Oct. 2, 2025).

Thank You! Questions?

- Title slide
- Overview of the presentation do not present the outline (per BSAC 2017)
- Problem statement initial problem as given by the client and some indication of how the problem statement was changed (not a long paragraph)
- Introduction client description, background material include relevant prior work, competing designs and other materials as needed
- Summary product design specification PDS (quantitative list of client requested functions)
- Design alternatives considered (advantages and disadvantages related to PDS)
- Design matrix 1
- Design matrix 2
- Final design
- Future work what pitfalls are expected through the design process
- References and acknowledgements (no QR codes)