

DEPARTMENT OF

Biomedical Engineering

UNIVERSITY OF WISCONSIN-MADISON

Primate Portal

Lab Section 304 October 3, 2025

Team Members

BME 300	Co-Team Leader
BME 300	Co-Team Leader
BME 200	Communicator
BME 200	BSAC
BME 300	BWIG
BME 200	BPAG
	BME 300 BME 200 BME 200 BME 300

Advisor and Client

Prof. Dhananjay Bhaskar Advisor Prof. David Herzfeld Client

Figure 1: Primate Portal Team Picture - Left to Right: Charlie, Jackson, Andrew, Kalob, Logan, Sameer

Outline

- Introduction
 - Client Description
 - Client's Problem Statement
 - Existing Designs
- Product Design Specification (PDS)
 - Design Alternatives
 - Design Matrix
- Final Design
 - Mechanical
 - Electrical
 - Software
- Future Work
- Conclusion

Client Description

- Professor David Herzfeld
- Department of Neuroscience
- Works with Rhesus Macaque

Figure 2: Dr. David Herzfeld

Figure 3: Rhesus Macaque

Problem Statement

Project Description

Develop a cage-mounted touchscreen device that delivers liquid rewards to primates

Client Requirements

- Safe (Water resistant, no exposed wiring, failsafes, durability)
- Efficient liquid delivery in a home environment
- Data storage locally, ethernet compatible, standard power inputs, open API
- Modularity focused and extensible for expansion

Cost Considerations

\$5,000 budget allocated for research and development

Background

- Training monkeys with positive reinforcement to understand complex cognitive behavior
- Complex neural response, easier to research
- In cage training benefits
 - Ease of Use
 - Stress Free

Figure 4: Example of primate using training system

Competing Design

Thomas Primate In Cage Training System (ICTS)

- Only in-cage system known to be commercially available [1]
- Shock- and waterproof 8" touchscreen
- Microprocessor control unit can control external devices (camera, eye tracker)
- Prohibitively expensive (~\$100K)
- Limited extensibility for new tasks

Figure 5: Thomas Primate In Cage Training System

Product Design Specifications (PDS)

- Safety by following IEC 60601 and Animal Welfare Act [2][3]
- Dispense juice when primate completes task
- Notification system if there is a failure
- Electronics Enclosed ip54
- Secured Touchscreen
- Modular for future improvements
- Data Accessible through USB or SSH
- Easy to use for operator

Display & Circuit Box Clasp

- Very compact combined casing.
- Freely movable nozzle.

Detachable hinge on the right side with a latch on the

Figure 6: Display and Circuit Box Clasp CAD design

left.

Horizontal Display

- Hole for nozzle on the right side of the screen.
- Hole in the back of the casing for wiring to the screen.
- Slidable side panels for easy access to the pump and screen.

Figure 7: Horizontal Display CAD design

Vertical Display

- Hole for the nozzle under the screen.
- Hole in the back of the casing for wiring to the screen.
- Slidable side panels for easy access to the screen and pump system.

Figure 8: Vertical Display CAD design

Design Matrix

Figure 9: Enclosure Design Matrix

Hardware Diagram

6 Pin Connection to Motor Controller:

- 5V
- GND
- R EN Forward enable
- L_EN Reverse Enable
- RPWM Forward Signal
- LPWM Reverse Signal

In progress:

- Dedicated power supply
- Magnetic interlocks

Figure 10: Hardware Diagram

Hardware Components

Raspberry Pi Details:

- Raspberry Pi 3B+
- Unix based OS with python control
- PWM wave output (pins 23 & 26) for motor control - 20,000 Hz communication
- SSH and VNC capabilities

Motor Controller and Peristaltic Pump

- MOSFET based motor controller [4] (acts as transistor to control voltage to pump)
- Protects back emf from motor
- Pump is positive displacement pump (pushes on tubing)
- No contact with inside of tubing

Figure 11: Connection Diagram of Raspberry Pi to Motor Controller to Peristaltic Pump

Software

- Match-to-Sample (MTS) Task
 - Cognitive-behavioral task that tests working memory
- Written in Python
 - Libraries: Tkinter (graphics) and Pillow (images)
 - Pictures from Brown University's MonkeyLogic [6]

Touchscreen

Requirements

- Water Resistant
- Impact Resistant

- 6 to 9 Inches
- Affordable
- Raspberry Pi Compatible

GreenTouch Features

- IP65 Rating
- 3-cm Tempered
 Glass
- 8 Inches
- \$200
- Linux Compatible

Figure 12: GreenTouch Touchscreen

GreenTouch 8" Touchscreen [5]

Final Design

Figure 13: Final Design CAD Model + Planned Layout

- Circuitry enclosed in bottom portion with pump
- Touchscreen held in slot in top part
- MTS software used to give correct signal to hardware and output reward

System Testing

Tests to be completed:

- Electronics Testing
 - Ensure correct input ALWAYS leads to liquid reward
 - Data storage testing
 - System Response Time: How fast liquid gets dispensed after a correct input
 - Calibrate liquid dispensing rate in ml/s
- Mechanical Testing
 - Stability of device while clamped onto the cage
 - Waterproof testing

Future Plans

- Purchase materials for fabrication
 - Touchscreens
 - Mechanical Materials
- Design clamping mechanism to fit device to the cage
- Begin mechanical prototyping
- Test electronics and software

Budget

Item	Description	Manufacturer	Mft Pt#	Vendor	Vendor Cat#	Date	QTY (Cost Each	Total	Link
Electronics										
	Advanced Raspberry Pi used to send out									
Raspberry Pi Model 3 B+	signals for motor controller	N/A	SC0073	UW Makerspace	SC0073	9/15/2025	1	\$45.00	\$45.00	https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
Wiring	Wiring to connect Raspberry Pi	N/A	N/A	UW Makerspace	N/A	9/22/2025	1	\$1.00	\$1.00	
Micro SD	Store Research data for researchers	N/A	N/A	UW Makerspace	N/A	9/15/2025	1	\$4.00	\$4.00	
Motor Controller	Connects to Raspberry Pi to initiate pump	Hiletgo	3-01-833	Amazon	3-01-833	9/22/2025	1	\$10.99	\$10.99	https://www.amazon.com/dp/B00WSN98DC?ref=ppx yo2ov dt b fed asin title
Mechanical										
A300BXS- Pump	Pump to push fluids	Anko	A302BX-300-S	Anko	A302BX-300-S	9/15/2025	1 (Gifted	\$0.00	ANKO A300BX-S OEM Peristaltic Pump Serial Control Brushless DC Models to 1700 mL/min
							1	TOTAL:	\$60.99	

Figure 14: Spreadsheet Outlining Budget for Design

Conclusion

- Behavioral tasks in neuroscientific research
 - Advantages of in-cage training
 - Disadvantages of competing system
- Our system
 - Extensible
 - Affordable
 - Runs and stores data locally
 - Easy for researcher use
 - Safe for NHP use
 - Notification system in case of failure

Acknowledgements

Professor David Herzfeld – Client

- Professor Dhananjay Bhaskar Advisor
- Dr. John Puccinelli Advisor

References

[1] "Thomas Incage training system (icts)," Thomas RECORDING, https://www.thomasrecording.com/thomas-incage-training-system-icts (accessed Oct. 3, 2025).

[2] "IEC 60601-1:2024 Ser," IEC, https://webstore.iec.ch/en/publication/2603 (accessed Oct. 3, 2025).

[3] "Animal Welfare Act," Animal Welfare Act | National Agricultural Library, https://www.nal.usda.gov/animal-health-and-welfare/animal-welfare-act (accessed Oct. 3, 2025).

[4] "Hiletgo BTS7960 43A high power motor driver Module/ smart car driver module for Arduino," HiLetgo BTS7960 43A High Power Motor Driver Module/ Smart Car Driver Module for Arduino, Shenzhen HiLetgo Technology Co., Ltd, https://www.hiletgo.com/ProductDetail/1958385.html (accessed Oct. 3, 2025).

[5] "GreenTouch 8 inch open frame 1024x600 HDMI PCAP touch monitors for consumer, hospitality markets," https://www.walmart.com/ip/GreenTouch-8-Inch-Open-Frame-1024x600-HDMI-PCAP-Touch-Monitors-for-Consumer-Retail-POS-a nd-Hospitality-Markets/15594114325 (accessed Oct. 3, 2025).

[6] "MonkeyLogic: Behavioral control in MATLAB," Brown University, https://www.brown.edu/Research/monkeylogic/ (accessed Oct. 3, 2025).

