

DEPARTMENT OF

Biomedical Engineering

UNIVERSITY OF WISCONSIN-MADISON

Weight Bearing Sensor

Cassity DeChenne (Communicator), Norah Greer (BWIG), Keira Ferrigan (BPAG), Niko Hess (Lead), Jetzu Thao (BSAC)

Cassity

Overview

Topic Order:

- 1. Client problem
- 2. Client and sensor background
- 3. PDS recap

- 4. Design alternatives
- 5. Circuit
- 6. Final design and future steps

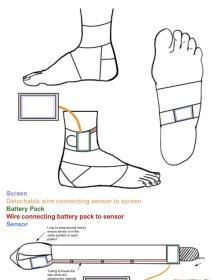
Problem Statement

 Request: Client wanted an inconspicuous sensor fitting in a patient's shoe to monitor weight distribution

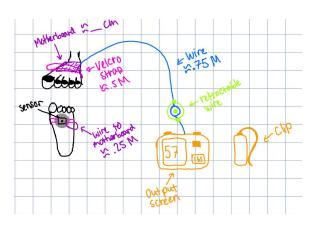
Alterations:

- Sensor surrounded with padding
- Sensor would be secured to foot with strap

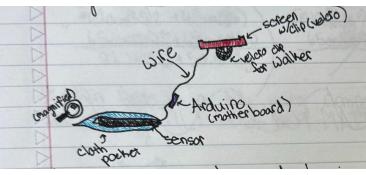
Introduction


- Client: Mr. Daniel Kutschera, PT
- Works with partial weight-bearing patients
 - Given percent weight bearing or pound amount
 - Need help putting this into practice
- Current Items on the Market: Beeper Boot, Stappone Rehab Insole
 [1]
 - Patient size varies greatly

Summary of PDS


- Adjustable to fit variety of sizes
- Comfortable
- As close to wireless as possible
- Accurate within 1-2 lbs/150 lbs
- Under \$500

Design Alternatives Considered


Design 1: The Built in Strap

Design 2: The Wrap-Around

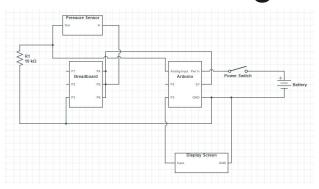
Design 3: The Cloth Pocket

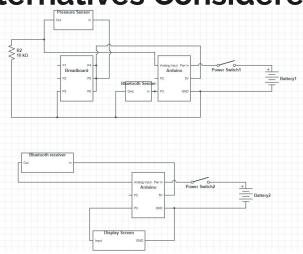
Pros: Can be placed at any area of foot

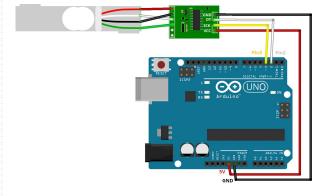
Cons: Could restrict patients range of motion

Pros: Can be placed comfortably in shoe

Cons: Arduino might be heavy for the wire


Pros: Very versatile


Cons: Velcro can wear


Design Matrix

			Design 1		Design 2		Design 3	
Criteria	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	
Safety	35	4.5	31.5	4	28	4	28	
Ergonomics	25	5	25	4	20	4	20	
Versatility	20	4	16	5	20	5	20	
Ease of use	15	4	12	3	12	4	12	
Cost	5	3	3	4	4	4.5	4.5	
Total	100	Sum	87.5	Sum	84	Sum	84.5	

Circuit Design Alternatives Considered

Base circuit:

Pros: very simple, cheap, and

easy to assemble

Cons: not compact, medium

accuracy

Base circuit with bluetooth:

Pros: most compact

Cons: medium accuracy, higher

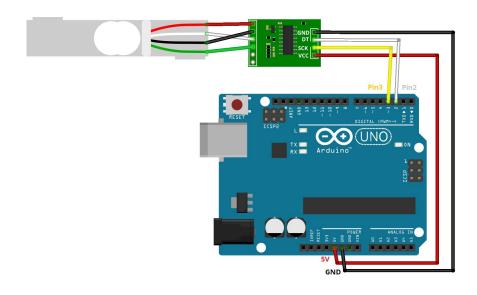
cost

Circuit with amplifier:

Pros: simple, high accuracy, easy

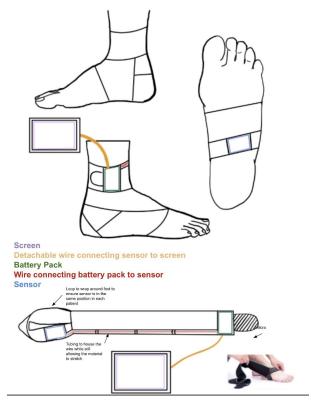
to assemble

Cons: not compact


[2]

Circuit Design Matrix

		Basic Circuit		Basic Circuit with bluetooth		Circuit with amplifier	
Criteria	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Safety	30	4.5	27	5	30	4.5	27
Accuracy	25	4	20	4	20	5	25
Compactness	20	4	16	4.5	18	4	16
Simplicity	10	5	10	3	6	4.5	9
Cost	5	4.5	4.5	3.5	3.5	4	4
Total	100	Sum	77.5	Sum	77.5	Sum	81


Final Circuit Design

- Highly accurate
- Simple
- Easy to fabricate
- Medium price point
- Avoids allergenic and dangerous materials [3]

Final Design

- Adjustable strap
- Battery pack
- Wired
- Sensor located on bottom of foot
- External screen

Design 1: Built in Strap

Testing and results

- No current testing results
- Future testing
 - Durability tests
 - Accuracy tests

Future Work

- Fine tune design to client needs
- Fabrication
- Testing
- Potential additions
 - Application software
 - Bluetooth

References

[1] "STAPPONE Rehab," stappone, May 10, 2023. https://www.stappone.com/en/products/partial-weight-bearing-management/stappone-rehab/

[2] S. Santos, "Arduino with Load Cell and HX711 Amplifier (Digital Scale) | Random Nerd Tutorials," Apr. 27, 2022. Available: https://randomnerdtutorials.com/arduino-load-cell-hx711/.

[3] K. Pachenko and J. Thyssen *Contact dermatitis from biomedical devices, implants, and metals-trouble from within* The journal of allergy and clinical immunology. In practice, https://pubmed.ncbi.nlm.nih.gov/39067854/.

Acknowledgements

Professor David Dean, Mr. Daniel Kutschera