Heated X-ray Examination Table

Team Leader: Tyler Vovos BWIG: Paul Schildgen BSAC: Joey Labuz Communicator: Joel Gaston

Client: Lanee MacLean Advisor: Mitch Tyler

Overview

- Background Information
- Problem Statement
- Design Specifications
- X-ray attenuation
- Component Alternatives
 - Padding
 - Tubing
 - Heating
- Proposed Design
- Future Work

Background Information

- Diagnostic use of X-ray
 - Density of body structures
 - Skeletal pathologies, some soft tissue applications
 - Anatomy vs physiology
- Duration of procedure
- Current exam table
 - Hard laminate surface
 - Dimensions 87" X 31-3/4"

http://www.advanceimaging.net/

Problem Statement

- Current X-ray examination tables are uncomfortable
 - Hard
 - Cold
- Discomfort may cause patient movement
- Long examination duration
- Not available commercially

Design Specifications

- Materials/design must be radiolucent
- No anatomical distortion
- Must incorporate patient control
- Must not obstruct the technician's workspace
- Patient safety
- Budget ~ \$200

Radiolucency of Materials

- Mass Attenuation Coefficient (μ/ρ)
- Dependent on Photon Energy (12.4-124 keV for Diagnostic Xrays)
- K/Absorption edge Photoelectric absorption of photons

Radiopaque Materials

Cortical Bone

Proposed Design

Padding

Category	Weight	PETa	PETb	PVR
Radiolucency	50	47	40	34
Cost	20	10	14	10
Firmness	20	14	16	10
Sterilization	10	9	4	7
Total	100	80	74	61

Tubing

$$Q = \frac{\prod (P_o - P_L)R^4}{8\mu L}$$

Q=Volumetric Flow Rate (gal/min) P_o =Initial Pressure (PSI) P_L =Final Pressure (PSI) R=Inside Diameter (in) L=Length of Tube (in) μ =Viscosity of Liquid (lb*s/in²)

Tubing

Category	Weight	PET	Vinyl	Nylon	PVC
Radiolucency	50	Test	Test	Test	Test
Thermal Conductivity	30	24	12	12	9
Cost	10	9	9	9	9
Strength	10	10	10	10	10
Total	100	43+?	31+?	31+?	28+?

Heating

- Materials thermal conductivity
- Determine Q_{tube} through testing
- Calculate temperature
 drop across tube wall
- Methods for heating fluid
 - Water heater element in tank
 - Heated wire in tubing
 - Commercial water heater

- Q = Heat rate across tube
- T = Temperature (kelvin)
- A = Cross-sectional area of tube
- k = Thermal conductivity of tube
- R = Radius of tube

Heating

Category	Weight	Coiled wire	Heater element	Commercial heater
Cost	70	56	56	14
Control	30	18	12	30
TOTAL	100	74	68	44

Proposed Design

Future Work

- Further testing of tube materials
- Purchase all necessary materials
- Fabrication of inlaid tubing system
- Fabrication of heating conduit

References

Bird, B., Lightfoot, E., Stewart, W., *Transport Phenomena*. New York: Wiley and Sons. 2007. Links, J. M., Links, J., Prince, J., Medical Imaging Signals and Systems. Prentice Hall, 2005. http://www.advanceimaging.net/ http://www.mcmaster.com/ http://physics.nist.gov/ Personal Interview with Dr. John Vetter Personal Interview with Prof. John Yin **Testing with Lanee MacLean**

Questions?

