MR-COMPATIBLE OLFACTOMETER

Team Members:

Ryan Kimmel

Joe Decker

Steve Welch

Kaitlin Brendel

Client: Dr. Vivek Prabhakaran

Advisor: Professor John G. Webster

Overview

- Problem Statement
- Background Information
- Project Design Specifications
- Design 1
- □ Design 2
- □ Design 3
- Design Matrix
- Electronics
- Final Design
- □ Future Work

Problem Statement

- Olfactory System to deliver timed odors
- For use during an fMRI experiment
- Must be MR compatible
- Provides accuracy for experiment
 - "Smell sticks"

www.teslasociety.com

fMRI Background

- Functional MagneticResonance Imaging
 - Blood Oxygen LevelDependent (BOLD)
 - Measures haemodynamic response of brain

This image is an activation map of a simple experiment where the subject was repeatedly shown an image for 30 s and a dark screen for 30 s.

Importance of Olfactory Research

- Alzheimer Research
 - Early diagnosis may include a loss of sense of smell
- Obesity Research
 - Sense of smell very closely related to taste
- □ Perfume Industry Research
- Cancer Treatment Research
 - Some odors relax patients

fMRI Olfactory Experiment

- Odor presented at periodic increments
- Monitor brain response to different odors
- Odor examples include: Vanilla, Ammonia, etc.

Past Olfactometers

- Many have been created for research at different universities and hospitals
- None commercially available

An olfactometer used at Harvard and McLean Hospital.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1 602106

Design Specifications

- Must be MRI compatible (no metal)
- Must have temperature control
- Must have 4 odor inputs
 - Liquid form in glass canisters
- Must have computer control for odor release
- Must be compatible with the client's experiments

Option #1: Five-Way Positive Pressure

- One valve controls airflow to all odors
- Clean air line separate from the valve
- Rate of air flow controlled after odor is picked up

Option #2: Two-Way Negative Pressure

- Odors positioned behind pump to create vacuum
- Two way solenoid valves control air flow
- Air flow controlled before pump

Option #3: Two-Way Positive Pressure

- □ Four two-way solenoid valves
- □ Air pump forcing air through the system
- Rate of flow controlled just before the mask

Design Matrix

Design Consideration		AIR FLOW DESIGNS		
	Weight	2-way negative	2-way positive	5-way positive
Safety	15	13	13	13
Cost	10	5	7	9
Ease of Operation	15	14	14	14
Accuracy for experiment	20	13	18	16
Aesthetics	5	3	4	3
Durability	15	10	12	8
Precision	20	18	18	18
TOTAL	100	76	86	81

Electronics

- User supplies input to control valve array
- □ Requires components:
 - □ PC + Program
 - Bus Interface (right)
 - Power Source
 - Power Relay

Electronics Layout

Program

- LabVIEW
- User Controls:
 - Odor Selection
 - Cycle Duration
 - Number of cycles
- Interface: LabJack U12 (USB)
 - Supplies low power signals to relay

Final Design Components

- Pump: Elite 801 AirPump by Hagen, \$7.99
 - 3.0 PSI, 2.5 W
- Air Mask: Anesthesia
 - \$3.99 for 1
- □ Odor Canister: 250mL
 - \$131.42 for 6
- □ Filters
 - OmniFilter R200, Charcoal
 - **\$13.50**
 - Tiara Medical HEPA
 - **\$6.95**

www.hagen.com

Future Work

- Select tubing/valve sizes
- Order parts
- Construct prototype
- Testing

References

- www.teslasociety.com
- www.fmrib.ox.ac.uk
- Lowen, S.B. and S.E. Lukas. 2006. A low-cost, MR-compatible olfactometer. Behav Res Methods 2006 38(2): 307-313.
- www.labjack.com
- www.hagen.com

Questions?