ENDOTRACHEAL TUBE TO REDUCE VENTILATOR ASSOCIATED PNEUMONIA

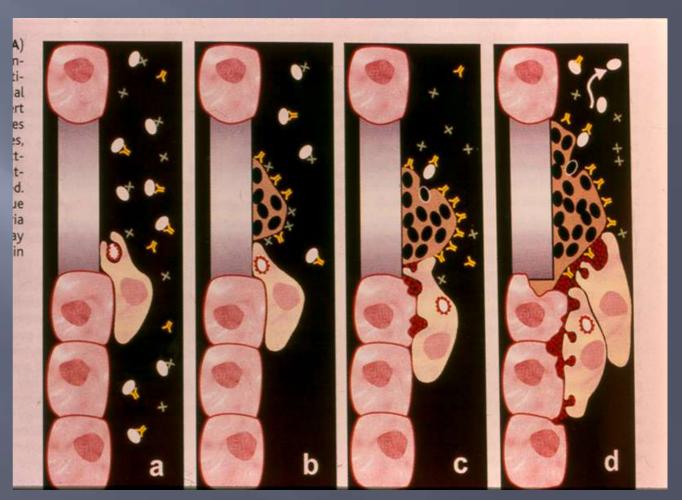
Team Members:

Evan Joyce- Co-Team Leader Scott Carpenter- Co-Team Leader Ozair Chaudhry - Communicator Ryan Childs – BSAC Paul Fossum - BWIG

Advisor:

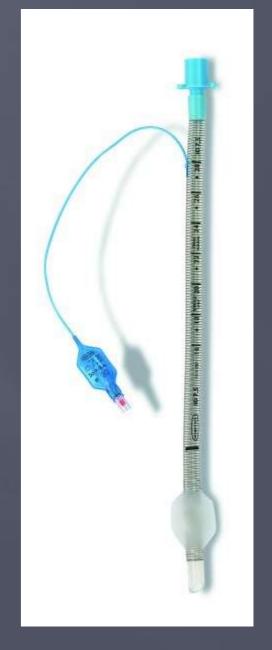
Professor Amit Nimunkar, PhD

Client:


Mark E. Schroeder, MD

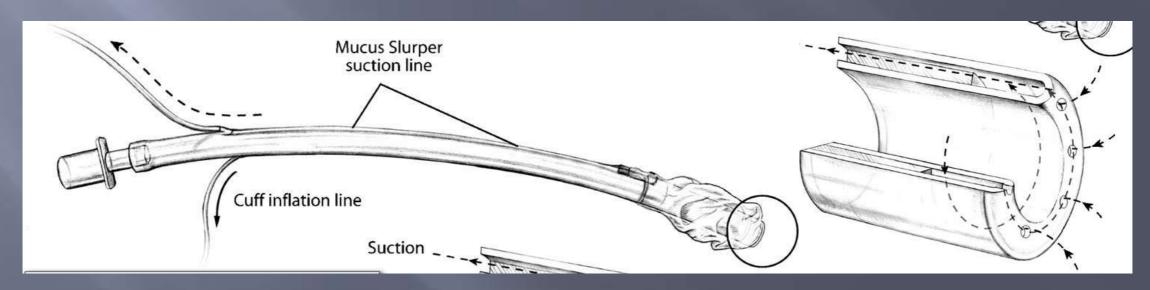
Mechanical Ventilation

- Mechanical Ventilation: a method to mechanically assist or replace spontaneous breathing
- Invasive and non-invasive methods
- Use of endotracheal tube (ETT) common for prolonged intubation
- Intubation can lead to various infectious diseases


What is VAP?

- VAP: ventilator associated pneumonia
 - Nosocomial pneumonia
 occurring in patients after
 48 hours of mechanical
 ventilation [3]
- Aerobic gram-negative bacilli, S. aureus, P. aeruginosa, and E. coli
- Occurs in 9-27% of all intubated patients [4]
- ICU stay increased by 28% and patient cost increased by \$10,000-\$37,000 [4]

Design Requirements


- Create an ETT or ETT attachment that:
 - Greatly reduces the risk of VAP
 - Maintains patient safety
 - Is cost-efficient
 - Reduces pressure on vocal cords
- Possible areas of improvement:
 - Cuff seal
 - Inner lumen sterilization
 - Elimination of biofilms

Existing Technology

Normal ETTs

- Cuffed and un-cuffed
- Double lumen
- RAE-preformed
- VAP-reducing ETTs
 - Silver coated/impregnated
 - Secretion removal
 - Cuffs made from various materials

Cuff Matrix

Cuff Related	Feasibility [15]	Efficacy [30]	Patient Safety [20]	Cost [20]	Ease of Use [15]	Total [100]
Gel/ Putty Wrapping	10	29	17	18	11	85
Subglottic Secretion Trap	13	21	18	15	10	77
Space Filling Gel/Foam	8	19	13	15	13	68

Inner Lumen Matrix

Inner Lumen	Feasibility [15]	Efficacy [30]	Patient Safety [20]	Cost [20]	Ease of Use [15]	Total [100]
Current Coil	12	28	12	14	12	78
Silver/Anti- microbial Coating	7	25	16	14	14	76
Anti- adhesive Polymer	7	18	18	18	14	75

Miscellaneous Matrix

Miscellaneous	Feasibility [15]	Efficacy [30]	Patient Safety [20]	Cost [20]	Ease of Use [15]	Total [100]
Lavage & Suction	8	24	17	12	13	74
Esophageal Plug	7	18	14	12	10	61
External Mucus Shaver	13	25	19	17	14	88
Sterile Wrapper	10	21	19	18	14	82

Future Work

- Manufacture Prototype
 - Triangular tube design
- Meeting with Professors Webster & Kao
 - Learn about electricity and possible materials
- Testing Prototype
 - Realistic trachea model or make testing apparatus

Special Thanks

- Professor Nimunkar
- Mark Schroeder, MD
- Douglas Coursin, MD
- Josh Medows, MD
- Keith Meyer, MD
- Andrea Parks, PA-C
- Mark Childs

Questions

References

- [1]. http://commons.wikimedia.org/wiki/File:Endotracheal_tube_colored.png
- [2]. Meyers, K. Ventilator Pneumonia (PowerPoint Presentation). 2005
- [3]. Pneumatikos, I.A., Dragoumanis, C.K., and Bouros, D.E. "Ventilator-associated Pneumonia or Endotracheal Tube-associated Pneumonia?: An Approach to the Pathogenesis and Preventive Strategies Emphasizing the Importance of Endotracheal Tube" Anesthesiology. March 2009 Volume 110 Issue 3 pp 673-680.
- [4]. Chastre, J. and Fagon, J.Y. "Ventilator-associated pneumonia." Am J Respir Crit Care Med. 2002 Volume 165 pp 867-903.
- [5]. http://www.frca.co.uk/images/frca_img_reinforced.jpg
- [6]. http://www.springerlink.com/content/q13512n381t25178/fulltext.pdf