Heated X-ray Examination Table

Team Leader: Tyler Vovos BWIG: Joel Gaston BSAC: Joey Labuz

Client: Lanee MacLean Advisor: Mitch Tyler

Problem Statement

- Current X-ray examination tables are uncomfortable
- Discomfort may cause patient movement
 - Poor image quality
 - Increased possibility of misdiagnosis
- No solutions available commercially

Motivation

- Minimum number of X-ray tables required per registered hospital = 1 (American Hospital Association, 2009)
- Number of registered hospitals (not including clinics) in the U.S. = 5,815 (American Hospital Association, 2009)
- Number of X-ray procedures performed in the U.S. in 2001 = 90.6 million (Census, 2001 and Bhargavan, 2005)

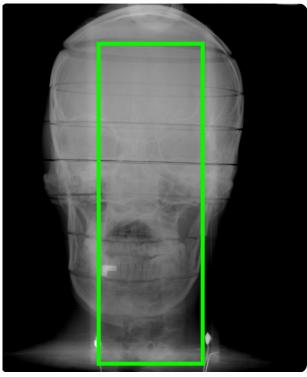
Background Information

- Diagnostic use of X-ray
 - Density of body structures
 - Skeletal pathologies, some soft tissue applications
 - Anatomy vs physiology
- Duration of procedure
- Current exam table
 - Hard laminate surface
 - Dimensions 87" X 31-3/4"

http://www.advanceimaging.net/

Design Specifications

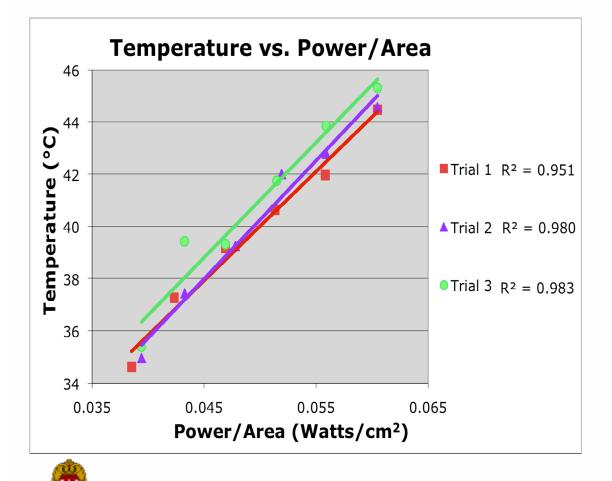
- Materials/design must be radiolucent
- No anatomical distortion
- Must incorporate patient control
- Must not obstruct tech's workspace
- Patient safety
- Low-cost



Testing

Radiolucency

• Image with head phantom overlaying.


• Image with no phantom. Image analysis software calculated less than 3.9% attenuation. (Peppler, 2009)

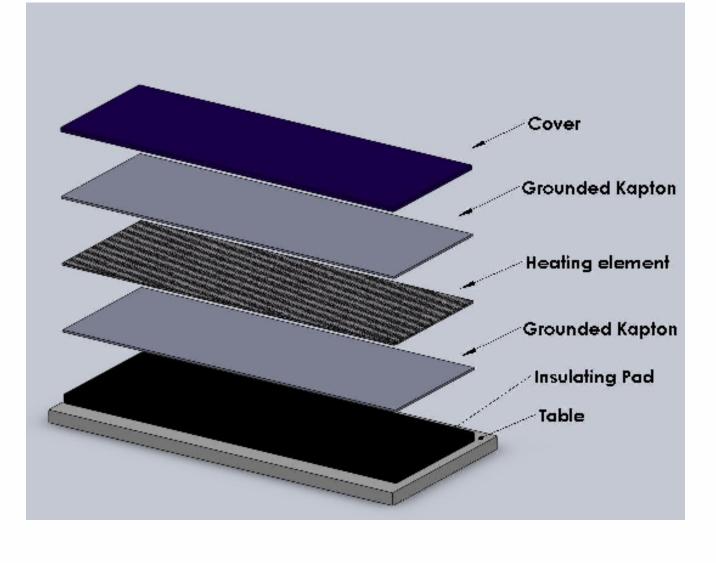
Power Demand

THE UNIVERSITY

ISCONSIN

Results

- •Target temperature = 35° C
- •Full scale power demand ≈ 660 Watts (I ≈ 5.5 amps, V ≈ 120 volts)
- •Temperature allowed to equilibrate for 1 min. after voltage increase
- 1 data point is the average of 3 temp.
 measurements



Design

Heating Unit Design

Cover Material Design Matrix

	Weight	High Density Polyethylene	Naugahyde ("Pleather")
Impermeable	50	50	10
Sterilizable	30	30	25
Comfortable	15	7	14
Ease of manufacture	5	4	3
TOTAL	100	91	52

Heating Element Materials

Indium Tin Oxide (ITO)

- Sputtered ITO layer
 - Poly(ethylene terephthalate) substrate
 - Ω=62.5/sq.
- Imperfections can cause hot spots

Kapton 200RS100

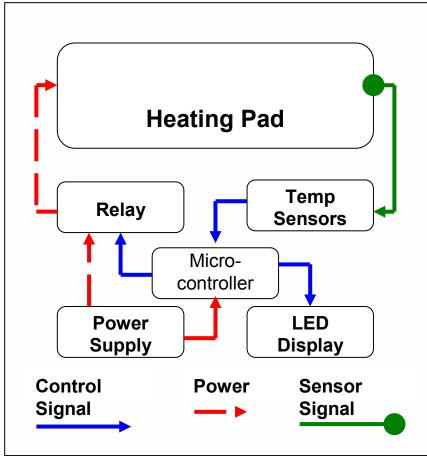
- Two-layer film
 - Dielectric layer up to 50 kV
 - Conductive layer Ω =100/sq.

THE UNIVERSIT

Homogeneous throughout

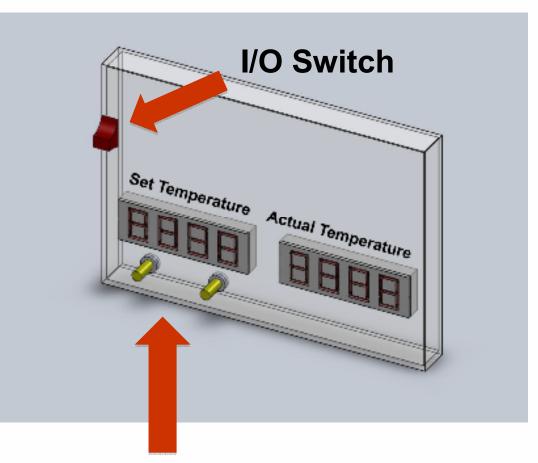
http://image.ecplaza.com/offer/k/kintechk/4397300_s.jpg

http://www.instrumart.com/Product.aspx?ProductID=22023


Heating Element Design Matrix

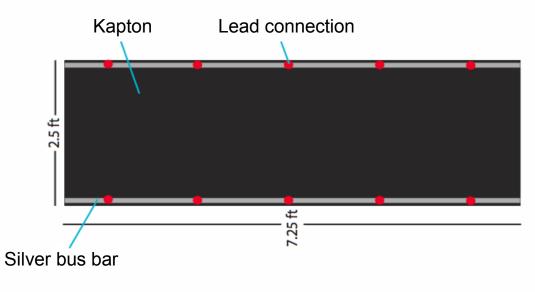
	Weight	Kapton	ITO Film
Uniformity	30	30	22
Heating	20	15	17
Radiolucency	15	15	15
Degradation	15	12	10
Flexibility	10	9	5
Cost	10	10	7
TOTAL	100	91	79

Control Circuit



- Temp monitoring
 - Three temp sensors
- Control
 - Microcontroller
 - Relays
- User Feedback
 - 4 digit LED display
 - Push switches

Control Interface

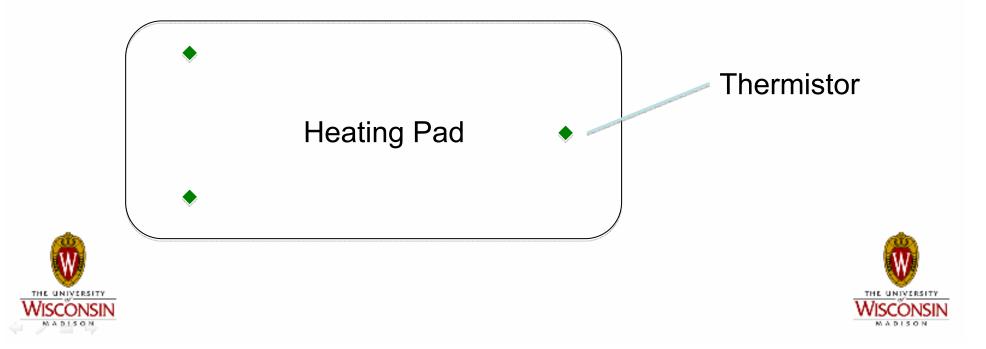


Temp Adjust Buttons

Connection Design Matrix

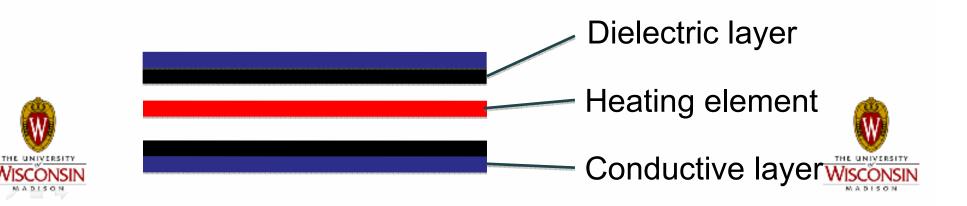
	Weight	Ероху	Solder	Clamp
Contact	30	24	28	19
Security	25	20	23	16
Resistivity	25	15	22	25
Temperatur	20	20	6	20
TOTAL	100	79	79	80

Safety



Droventing Purpe

Preventing Burns


- 3 thermistor system
 - Any one can trigger shut-off
- Necrosis begins at 44 °C (Exponent, Inc., 2010)

Preventing Electrocution

- Cover Isolation
- Kapton dielectric layer
- Kapton conductive layer
- GFI

- Finalize bus bar specs
- Prototype fabrication
- Heating testing
- Safety validation

References

- DuPont. "Kapton 200RS100." Technical Data Sheet. 2010.
- Exponent, Inc. "Scalding and Burning." Technical pamphlet. 2010.
- Prof. Wally Peppler. "Fuji Transform." ImageJ macro. 2009.
- American Hospital Association. "Fast Facts on US Hospitals." 11 Nov. 2009.
- Bhargavan, M and Sunshine, JH. "Utilization of Radiology Services in the United States: Levels and Trends in Modlaities, Regions, and Populations." *Radiology*. 2005. 234: 824-832.

US Census Bureau. "Section 1: Populations." Statistical Abstract of the United States: 2001.

Questions?

