Head Holder for MR-Guided Drug Delivery

Kim Maciolek (Team Leader), Gabe Bautista (Communicator) Hope Marshall (BSAC), Kevin Beene (BWIG)

Client: Dr. Wally Block, Department of Biomedical Engineering

Advisor: Dr. Thomas Yen, Department of Biomedical Engineering

Outline

- Introduction
 - Research Protocol
 - Current Design
- Problem Statement
- Designs
 - Criteria
 - □ Pros & Cons
 - Matrix
- □ Future Work
- Acknowledgements
- References

Convection-Enhanced Drug Delivery (CED)

 Deliver drugs directly into brain tissue via continuous infusion through intracranial catheters [1]

Figure 1: Sketch of CED [2].

CED (cont.)

- □ Target specific site → Achieve high localized drug concentrations
 - Overcome blood brain barrier
 - Avoid systemic toxicity
- Many variables: More research needed
- □ Difficult to monitor convection → add MRI contrast agents to injection → observe injection with MRI [1]

Magnetic Resonance Imaging (MRI)

Figure 2: MRI scanner [3] and MRI image of brain [4].

- Commonly used clinically to image soft tissues
- Uses large magnetic fields to excite protons, measures response, creates high contrast images

Current Head Holder

Figure 4: Current head holder. Photo taken by Hope Marshall [5].

Problem Statement

- Software requires use of MRI antenna array
- Current head holder uses ear bars
 - Interfere with antenna array

Figure 5: MRI Interventions Port. Photo taken by Kevin Beene [6].

Figure 6: Carotid coils.

Photo taken by Kevin Beene

Design Criteria

- MRI Compatible
 - Non-ferrous materials
 - \square Fit in MRI bore (34 cm x 60 cm)
- Compatible with experimental setup
 - MRI antenna array
 - MRI Interventions port
 - Breathing tube
- Restrict translational movement to 1mm
- Adjustable based on testing subject

Eye Bar Design

Figure 7: SolidWorks drawing of Eye Bar design. Drawing created by Gabe Bautista [7].

Eye Bar Design (cont.)

- Pros
 - Components from standard design
 - Durability

- □ Cons
 - Ease of construction
 - Uncertain accuracy

Band/Track Design

Figure 8: SolidWorks drawing of Band/Track design. Drawing created by Gabe Bautista [7].

Band/Track Design (cont.)

- Pros
 - Band stabilizes z direction
 - Adjustments
 - Accuracy
 - Versatile
 - Low cost
 - Easy to use
 - Quick adjustments

- Cons
 - Durability of band material
 - Manufacturability

Fork Support Design

Figure 10: SolidWorks drawing of Fork Support design. Drawing created by Gabe Bautista

Fork Support (cont.)

- Pros
 - Cost
 - Durability
 - Strength of material

- □ Cons
 - Ease of construction
 - Safety of animal
 - Uncertain accuracy

Design Accessories

- Water markers for alignment in MRI
- Head elevation system

Figure 11: MRI with markers in ear bars [8].

Figure 12: Head elevation system [9].

Design Matrix

	Weight	Band/Track Design	Fork Support	Eye Bar Design
Cost	10%	10	8	8
Ease of				
Construction	15%	12	12	6
Ease of Use/				
Ergonomics	20%	20	16	16
Durability	25%	15	20	25
Margin of Error	30%	30	12	24
TOTAL	. 100%	87	68	79

Final Design

Figure 13: SolidWorks drawings of the final design. Drawings created by Gabe Bautista

Future Work

- Meet with veterinarian to determine safety of final design
- More detailed SolidWorks models
- Begin constructing the final design
 - Obtain necessary materials
- Testing
 - In vivo testing
 - Assess accuracy of device

Acknowledgements

We would like to extend a special thanks to:

- Wally Block (client)
- Nikki Goecks (collaborator)
- Ethan Brodsky (collaborator)
- Chris Ross (collaborator)
- Professor Yen (advisor)

References

- [1] Mardor Y, Rahav O, Zauberman Y, et al. "Convection-Enhanced Drug Delivery: Increase Efficacy and Magnetic Resonance Imaging Monitoring." Cancer Res 2005; 65: 6858-6863.
- [2] Brodsky EK, Block WF, Alexander AL, Emborg ME, Ross CD, and Sillay KA. "Intraoperative Device Targeting Using Real-Time MRI." *IEEE Biomedical Sciences and Engineering Conference* (BSEC), 2011. https://www.ornl.gov/bsec_conferences/2011/presentations/Brodsky.pdf
- [3] Innov8: Medical Equipment Innovators. http://www.usedctscannersandmri.com/ge-ct-mri.html
- [4] Cedars-Sinai. "MRI Brain." 2011. http://www.cedars-sinai.edu/Medical-Professionals/Imaging-Center/Neuroradiology/MRI-Brain.aspx
- [5] Marshall H. Current Head Holder. Photo. 2012.
- [6] Beene K. MRI Interventions Port and Carotid Coil. Photos.
- [7] Bautista G. SolidWorks Drawings of Designs. Photo. 2012.
- [8] Baker SN, Philbin N, Spinks R, Pinches EM, Wolpert DM, MacManus DG, Pauluis Q, and Lemon RN. "Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes." J Neurosci Methods. 1999 Dec 15; 94(1): 5-17
- [9] Marshall H. Head Elevation Mechanism. Photo. 2012.

Questions?