Upper Extremity Dynamic Sling

Team Leader: Kelly Hanneken

Communicator: Tony Schmitz

BWIG: Colin Dunn

BSAC: Marie Greuel

Client: Mrs. Karen Blaschke, OTR/L, CHT

Advisor: Dr. John P. Puccinelli, PhD

Agenda

- Problem Statement
- Background
- Project Design Specifications
- Existing Designs
- Designs for Arm Portion
- Designs for Anchor
- Final Design
- Future Work

Problem Statement

- Client: Karen Blaschke, OTR/L, CHT, Rehabilitation Medicine, UW Hospital and Clinics
- Sling to support upper extremities during running post brachial plexus injury
- Possibly applied to rotator cuff injuries as well as other impact injuries

Background

- The brachial plexus is a network of nerves
 - Conducts signals to the shoulder, arm, and hand
- Injury most commonly caused by trauma
- Many levels of severity
- Treated with therapy and/or surgery

Project Design Specifications

- Support shoulder, prevent subluxation/slouching
- Assist user while running or during exercise
- Adjust to different body types
- Comfortable, breathable, no abrasion or chaffing
- Easy to assemble
- Secure properly to body

Existing Designs

GivMohr Sling

Roylan Humerus Cuff

Highlights of Previous Design

Thera-Band for dynamic movement

Thera-Band for Elbow Support

Designs - Arm

Arm Matrix

Category	Weight	Full Sleeve	Cuffs	Hybrid
Cost	10%	7	8	7
Ease of Manufacturing	15%	6	7	5
Ease of Use	15%	5	4	8
Universality	15%	4	7	8
Mechanics	25%	5	7	8
Ergonomics	20%	7	4	8
Total Out of 10		5.6	6.05	7.3

Designs - Anchor

Anchor Matrix

Category	Weight	Strap Design	Vest Design
Cost	10%	8	5
Ease of Manufacturing	15%	7	5
Ease of Use	15%	4	7
Universality	15%	6	8
Mechanics	25%	6	8
Ergonomics	20%	6	8
Total Out of 10		6.05	7.1

Final Design

Future Work

- Biomechanic analysis of forces carried by arm
- Analysis of forces during running motion
- Determination of sufficient anchoring and locations
- Material Determination
- Active testing

Acknowledgements

- Dr. John P. Puccinelli, Advisor
- Karen A. Blaschke OTR/CHT, Client

References

Mayo Clinic. 2011. Brachial plexus injury. http://www.mayoclinic.com/health/brachial-plexus-injury/DS00897

Mayo Foundation for Medical Education and Research. 2013. http://www.mayoclinic.com/health/medical/IM03050

UC San Diego Health System Neurology. 2011. Brachial Plexus Injury. http://neurosurgery.ucsd.edu/brachial-plexus-injuries/

Lindemann, P. (1986). *U.S. Patent No. 4,598,703*. Washington, DC: U.S. Patent Dieruf, K., Poole, J. L., Gregory, C., Rodriguez, E. J., &

Spizman, C. (2005). Comparative effectiveness of the givmohr sling in subjects with flaccid upper limbs on subluxation through radiologic analysis. *Archives of physical medicine and rehabilitation*, 86 (12), 2324-2329.and Trademark Office.

Questions?