Tibial stent: Designing a novel fixation device for pediatric orthopaedic tibia fractures

Advisor: Tracy Puccinelli Ph. D.

Client: Dr. Matthew A. Halanski, M.D.

Design Team:

Taylor Jaraczewski, Team Leader Lucas Schimmelpfenning, Communicator Cody Bindl, BWIG Stephen Kernien, BSAC

Project Overview

Create expandable implant for tibia fractures in children that aligns and supports the bone

Requirements

- Must avoid growth plates
- Must be biocompatible
- Must have sufficient stability

Background

- Tibial fractures constitute 5% of all fractures in children
- Current procedure utilizes elastic nails
- Difficult to implant and align
- \$259-328 for titanium and \$78 for stainlesssteel

Design

Flexible Wires E

End Cap

 Vertical compression creates horizontal expansion
 Mid Cap

Current Prototype

Design Evaluation

Implantation Test

Resultant Force From Varying Axial Forces 6 Resultant Force (N) 2 0 0 50 100 Axial Force (N)

SolidWorks Analysis

Design Improvements

- New Designs will include more wires
- Loops of wire will be used at the end cap and distal cap to secure the device and facilitate removal
- A handheld tensioning device will be used during implantation

device

End Cap

End Cap

Mid Cap

Fabrication

- Components will be machined on a Micro mill
- All components grade 304 Stainless Steel
- Wires will be welded into sockets using 304
 Stainless Steel electrodes

Future Testing

- Biomechanical Analysis in Animal Model
 - Rotational Stability
 - Axial Stress Durability
 - 4 point bending: Sagittal and Coronal Plane

http://grabcad.com/library/mts-machine

 $https://www.biomedtown.org/biomed_town/LHDL/Reception/collection/FourPointBendingOfLongBones\\$

Final Product

Packaging

- Sterile
- Surgical Grade
- Individually wrapped (one time use)

Cost

TOTAL	\$209.31
 Manufacturing 	\$200.00
304 Stainless Strand 1/16 "	\$4.81
304 Stainless Wire x 4	\$4.00
 304 Stainless Steel Rod Stock 1/4 " 	\$0.50

Timeline

Task	Jan	February				March				April			
	31	7	14	21	28	7	14	21	28	4	11	18	25
Project R&D													
Further Modifications		X											
Micro-mill Fabricate													
Biomechanical Analysis (MTS)													
Deliverables													
Progress Reports	X	Х	Х										
Midsemester													
Final Poster													
Tong Presentation													
Update	X	X	X										

Special Thanks

- Dr. Matthew Halanski
- Prof. Tracy Puccinelli
- Prof. Darryl Thelen
- Prof. Hiedi Ploeg

References

- 1. Howarth WR, Gottschalk HP, Hosalkar HS. Tibial tubercle fractures in children with intra-articular involvement: Surgical tips for Technical ease. *J ChildOrthop*. 2011 Dec; 5(6): 465-70.
- 2. Foster PA, Barton SB, Jones SC, Morrison RJ, Britten S. The treatment of complex tibial shaft fractures by the Ilizarov method. *J Bone Joint Surg Br*. 2012 Dec; 94(12): 1678-83.
- 3. Mashru, R. P., Herman, M. J., & Pizzutillo, P. D. (2005). Tibial shaft fractures in children and adolescents. *American Academy of Orthopaedic Surgeons*, 13(5), 345-352. Retrieved from http://www.jaaos.org/content/13/5/345.abstract
- 4. He B, Wang J. Plate fixation of paediatric fractures of the distal tibia and fibula. *Acta Orthop Belg.* 2012 Oct; 78(5): 660-2.
- 5. Eralp L, Kocaoğlu M, Polat G, Baş A, Dirican A, Azam ME. A comparison of external fixation alone or combined with intramedullary nailing in the treatment of segmental tibial defects. *Acta Orthop Belg.* 2012 Oct; 78(5): 652-9.
- 6. http://www.eorthopod.com/content/blounts-disease-in-children-and-adolescents
- 7. Wheeless, Clifford, MD. 2012. Tibial Fractures: Techniques of IM Nailing. *Wheeless' Textbook of Orthopaedics.*
- http://www.wheelessonline.com/ortho/tibial_fractures_technique_of_im_nailing

Questions

