Interstitial Optical Probe

BME 301 Michael Simonson Tommy Zipp Matt Boyer Sam Lines

Advisor: Dr. Paul Thompson Client: Dr. Michael Kissick

Table of Contents

- I. Motivation
- II. Background
- III. Problem
- **IV. Client Requirements**
- V. Design Alternatives
 - A. Modified Clip
 - B. Staggered Needles
 - C. Two Unit Clasp
- VI. Design Selection Matrix
- VII. Future Work
- VIII. Questions
- IX. References and Acknowledgements

Client Background

• Client: Dr. Michael Kissick

- Ph. D. UW Madison Theoretical Plasma Physics
- MS UW Madison Medical Physics and Theoretical Plasma Physics
- BS Penn State Plasma/Fusion Nuclear Engineering
- Currently pursuing non-uniform radiation dose prescriptions towards more biologically meaningful patterns

Motivation

- Radiation treatments can be \$1,700 to \$4,000 per session (can be 1-50 sessions per treatment plan) [1]
- About 3 out of 5 people with cancer get radiation therapy [2]
- Half of all men and one-third of all women in US will develop cancer during their lifetimes [3]

Uniform vs. Nonuniform Doses

Early depiction of radiation therapy using external beam. From xray.hmu.psu.edu

Problem Background

Oxygen M.W. Dewhirst et al, *Nature Reviews* (2008)

- Measuring oxygen distribution within tumors is dominant factor for tracking tumor growth [4]
- Tumors are not uniform, therefore dose application shouldn't be! [5]
- Current methods assume spherical tumor reoxygenation after therapy - too idealized

Problem Statement

- Analysis of oxygen saturation in cancerous tissue allows for tracking of development patterns
- Observation of optical diffusion inside tumor is accomplished by using interstitial probes
- There is a need for a device to hold two probes at a set distance for use in mouse xenograft
- Long term goal is to design an optimal probe holder for human use.

Client Requirements/Design Specifications

Physical/Operational Characteristics

- Two optical probe needles fixed 3mm apart tip-to-tip
- o Able to penetrate epidermis of skin at least 2mm with ease
- o Rotationally rigid with bevels of needles facing each other
- o Minimally invasive
- o Reusable

Production Characteristics

- Easily manufactured 3D printed
- Low cost design budget ~\$100

Competition

- o Eppendorf probe
- o OxyLite

OxyLite probe [7]

Design One: Modified Clip

Design Two: Staggered Needles

Design Three: Two Unit Clasp

Design Matrix

Interstitial Optical Probe Design Matrix						
	Design 1		Design 2		Design 3	
Criteria (weight)	Modified Clip		Staggered		Two Unit Clasp	
Ease of use (30)	4	24	5	30	3	18
Precision (25)	5	25	4	20	3	15
Longevity (25)	4	20	3	15	5	25
Size (10)	5	10	4	8	2	4
Safety (5)	4	4	5	5	4	4
Cost (5)	5	5	4	4	3	3
Total (100)	88		82		69	

Future Work

- Maintain Contact with client and update design
- Device for long term use
 - Needles that can be removed allowing optical fibers to remain in patient
- Device that can be easily used on humans with varying tumor size & location
 - Have several different needle positions
- Easy-To-Use Bedside Convenience

References and Acknowledgements

- [1] Comprehensive Cancer Center University of Michigan. Dr. David D. Howell. (2009, October)
- [2] http://www.cancer.gov/cancertopics/coping/radiation-therapy-and-you/page2. National Cancer Institute. (Posted 4/20/2007)
- [3] http://www.cancer.org/cancer/cancerbasics/what-is-cancer. American Cancer Society. (Updated 3/21/12)
- [4] "The concentration of oxygen... as a factor in Radiotherapy". L.H. Gray, et al. Journal of Radiology. (1953)
- [5] M.W. Dewhirst et al. Nature Reviews, Cancer. (2008)
- [6] Kissick, M. (2014, February). On Radiotherapy & Oxygen Dynamics. Lecture conducted from University of Wisconsin-Madison, Madison, WI.
- [7] Sensors for Oxygen Monitors. Oxford Optronix. February 2014. http://www.oxford-optronix.com/sensor12/sensor-for-Oxygen-Monitors.html

We would like to thank our advisor Dr. Paul Thompson and our client Dr. Michael Kissick for their support of this project