Somatosensory Stimulation Apparatus for Rodent Cages

Team Leader: Tim Lieb

Communicator: Luke DeZellar

BWIG: Emmy Russell

BSAC: Albert Anderson

BPAG: Alli Abolarin

Client: Dr. Aaron Dingle, Department of Surgery

Advisor: Prof. Mitch Tyler, Department of Biomedical Engineering

Overview:

- Project Relevance
- Problem Statement
- Physiological Background
- Product Design Specifications
- Fall 2017 Prototype
- Electronics Modifications
- Cage Modification
- Semester Timeline
- Future Work
- References & Acknowledgments

Project Relevance

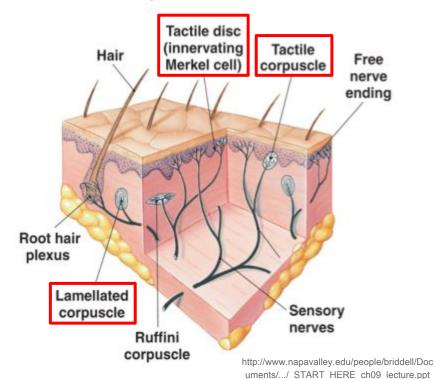
- 185,000 amputee surgeries per year in US [1]
 - 42.2-78.8% of amputees suffer from phantom limb pain [2]
- Dr. Dingle designing an electronic interface for peripheral nerves
 - Electrode allows prosthetics to restore sense of touch and relieve pain
 - Need method for testing device in rat models
- Current plan for rat testing:
 - Train healthy rat to respond to somatosensory stimulus on hindlimbs
 - De-aferent hindlimb and implant device
 - Stimulate hindlimbs with electrode and observe if rat responds the same way

Problem Statement

Design device to provide somatosensory stimulus to rat hindlimbs

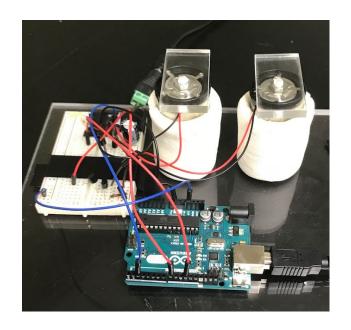
Provide graded stimulus to each hindlimb individually

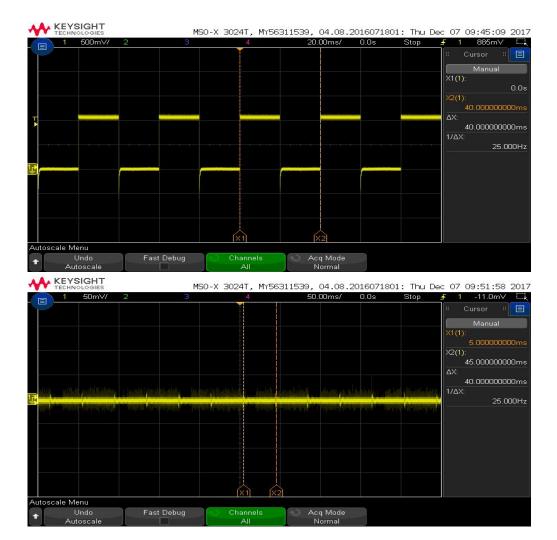
o Include microcontroller to control stimulation


Device must include cage to train rat

Cage must not limit rat's ability to respond to stimulus

Physiological Background


- Somatosensory system: System of neurons connecting peripherals to brain
- Merkel cells
 - Nerve endings in basal epidermis
 - Sense low frequency vibrations 5-15Hz [3]
- Tactile corpuscles
 - Mechanoreceptors in dermis
 - Sense 10-50Hz frequencies [3]
- Lamellar corpuscles
 - Mechanoreceptors in hypodermis
 - Sense frequencies up to 250 Hz

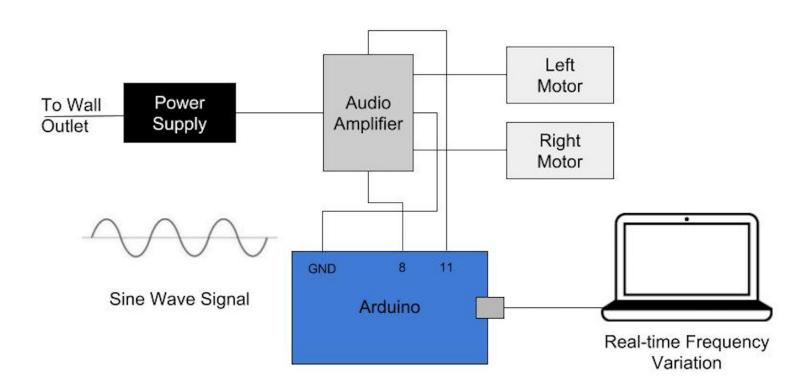


Product Design Specifications

- Provide stimulation to the rat's hindlimbs. Stimulation must
 - Be isolated to the individual limbs.
 - Not interfere with the electrode therapy
 - Allow for varying frequencies
- The cage can not limit the rat's mobility and ability to respond to the stimulation
- Cage dimensions: 10 in x 11 in x 12 in
 - Must weigh under 5 lbs to allow for easy storage and use
 - Clear polycarbonate walls

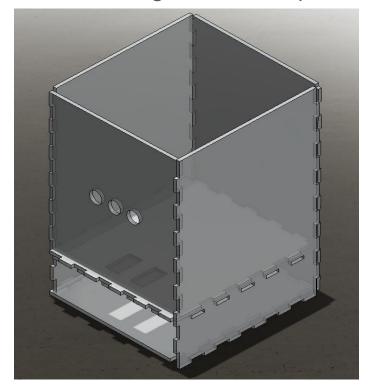
Fall 2017 Prototype

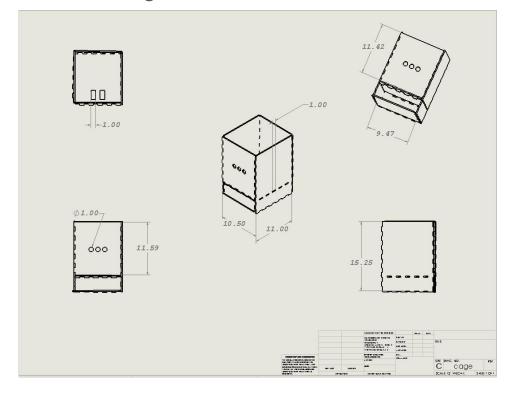
Fall 2017 Prototype


Successes

- Created vibrations within desired frequency range
- Different frequencies of vibration could be delivered simultaneously

Shortcomings


- Square wave introduced unwanted harmonics
- Holes for the rat's response were at an incorrect height
- Interface was not user friendly
- Overall design was not aesthetically pleasing


Electronics Modifications

Cage Modifications

Rodent cage made of 6 pieces with interlocking tabs

Semester Timeline

Prototype Fabrication: 3 Weeks

- Fabricate new cage
- Update electronics and code
- Complete requirements for animal testing

Bench Testing: 2 Weeks

- Ensure the prototype works properly
- Perform bench testing to verify frequency

Semester Timeline

Animal Testing: 3 Weeks

- Ensure the device works in the lab
- Verify the healthy rats respond as predicted
- Perform data analysis

Wrap-up: 1 Week

- Finish data analysis
- Prepare for final presentation

Future Work

- Join client's pre-existing protocol for testing
- Obtain proper certification necessary for rodent handling
- Use old cage to observe animal behavior
- Fabricate new design and analyze
- Test new electronic components with cage
- Test cage with rodents
- Work with client on analyzing the data

References & Acknowledgements

Special thanks to Dr. Amit Nimunkar and Dr. Aaron Suminski for their guidance

- [1] "Limb Prosthetics Services and Devices", *Semantic Scholar*, 2017. [Online]. Available: https://pdfs.semanticscholar.org/c3ae/f3563844e2e2835411fcbc2b0fe3091ac30b.pdf. [Accessed: 20- Sep- 2017].
- [2] B. Subedi and G. Grossberg, "Phantom Limb Pain: Mechanisms and Treatment Approaches", *Pain Research and Treatment*, vol. 2011, pp. 1-8, 2011.
- [3] A. Basbaum, The Senses: A Comprehensive Reference. Oxford, U.K.: Elsevier, 2008, pp. 33-38.

Questions?