

Automatic Intramyocardial Stem Cell Injection Device

Team Heartthrob Parker Esswein, Macy Frank, Lars Krugel, Vanessa Obrycki, and Gab Zuern

Client: Dr. Amish Raval

Advisor: Dr. Melissa Kinney

02/25/2022

Motivation

- Cardiovascular disease is the leading cause of death
 - 696,962 deaths in the U.S in 2020
 [Prevention, 2019]
 - ~5 million people experience heart failure annually with over 250,000 deaths [Tomaselli et al., 2004]
- Treatment via Novel Approach
 - Intramyocardial Stem Cell Injection

Figure 1: Stem cell therapy in the myocardium Source: [Health.Harvard].

Problem Statement

- No automated injection device designed for stem cell delivery to the myocardium
 - Operations are performed manually
 - Lack of efficacy
 - Susceptible to hand fatigue
- Need a force sensor feedback system specific to stem cell injection in the myocardium
 - Catheter placement and blockage assistance

Solution: Automatic controlled flow rate of the cells to the heart

Figure 2: Set-up of the catheter, connection tubing and syringe.

Background Information

- Current Cardiovascular Disease Treatment
 - O 25 50% mortality rate within 5 years [Rheault-Henry et al., 2021]
- Mesenchymal stem cells (MSCs)
 - O Derived from bone marrow [Boyle et al., 2010]
 - Therapeutic potential [Hmadcha et al., 2020]
- Flow rate
 - Too fast or too slow
 - Damaging to cells [White, 2016]
 - Off-target effects
 - Rate inconsistency

Figure 3: Mesenchymal stem cells in culture [Boyle, et. al, 2010].

Competing Designs

- Baxter Infus OR Syringe Pump ABC 4100
 [Wilburn, 2020]
 - Controlled volume of anesthesia
 - Syringe is loaded, flow rate set, clicking start
 - Sense syringe plunger force and movement
- Syringe Pump [Apparatus, 2020]
 - Simplified System
 - Controlled flow rate system
 - Client has one in the lab
 - No force sensor

Figure 4: The "Baxter Infus OR Syringe Pump ABC 4100" [Wilburn, 2020].

Figure 5: Automatic Harvard syringe pump.

Product Design Specifications

- Electronically inject MSCs into the myocardium
 - Maintain cell viability 5% variance
- Compatible with standard catheters, medical grade tubing, and procedural syringes (1 - 20 mL)
- Withstand sterilization [CDC, 2019]
 - Sterility assurance level of 10⁻³ [FDA, 2013]
- 30 and 60 second injection rates (± 0.5 seconds)
 - O Deliver 0.5 mL of solution [Raval et al., 2021]
- Force sensing resistor and visual feedback
 - \circ Threshold = 2.4 N [Doumit et al., 2016]
- Budget of \$3000 and manufacture cost of \$500 [Raval, 2022]

Tubing \ Syringes

Figure 6: Standard catheters, medical grade tubing and procedural syringes

Force Sensor and Visual Feedback System

- FSR 400 Series Round Force Sensing Resistor [Electronics, 2021]
 - Actuation force 0.1 N
 - Force sensitivity range 0 N 10 N
- Four Signal Feedback System
 - Arduino IDE Constant force output [Arduino, 2022]
 - Injection LED Signals [Doumit et al., 2016]
 - Blue = Air/Cavity (< 0.6 N)
 - Green = Healthy Tissue
 - Orange = Diseased Tissue
 - \blacksquare Red = Threshold Force (2.4 N)

Figure 7: FSR 400 Force Sensing Resistor highlighting its two prong connectors that allow breadboard and circuit integration [Electronics, 2021].

Cellicopter: Propeller Controlled Injections

- Design Features
 - Speed Control DC Motor [Motor, 2020]
 - Ultimaker PLA Force Application Rod
 - Syringe Clamp Molds
- Advantages
 - Portability
 - Durability
- Disadvantages
 - Injection Rate Efficacy
 - DC Motor Cost

Figure 8: Cellicopter SolidWorks design, highlighting key features and scale.

Cellringe Pump: Thread Regulated Injections

- Design Features
 - Stepper Motor [Industries, 2022]
 - Force Application via a Threaded Screw
 - Syringe Clamp Molds
- Advantages
 - Cell Viability and Injection Rate Efficacy
 - Ease of Fabrication
- Disadvantages
 - Durability

Figure 9: Cellringe Pump Sketch, highlighting key design features and scale.

Cellvolver: Fully Automatic Dual Motor Injections

- Design Features
 - Two DC Motors [Motor, 2020]
 - Fully Automatic Injection Procedure
 - Threaded Screw Force Application
- Advantages
 - Ease of Operation
 - Controlled Force Application
- Disadvantages
 - Fabrication Feasibility
 - Safety

Figure 10: Cellvolver Sketch, highlighting key design features and scale.

Design Matrix Criteria

Table 1: Design criterion and associated weight values.

Design Criteria	Weight		
Ease of Operation	25		
Efficacy	20		
Feasibility	20		
Safety	10		
Cost	10		
Portability and Maneuverability	10		
Durability	5		
Total (100)	100		

Design MatrixTable 2: Design Matrix evaluating top three designs. The "Cellringe Pump" design won as the top design idea.

Automated Injection System Base Designs								
Design Criteria	Weight	Cellicopter: Propeller Controlled Injections	Ultraker FLA From Red Dyings Doings Doings	Cellringe Pump: Threaded Regulated Injection	Threaded rod powered by DC motor Push Block Fush Block Fush Block	Cellvolver: Fully Automatic Dual Motor Injections	DC Motor S x/4 Syringes	
Ease of Operation	25	4/5	20	4/5	20	5/5	25	
Efficacy	20	4/5	16	5/5	20	3/5	12	
Feasibility	20	4/5	16	5/5	20	3/5	12	
Safety	10	5/5	10	5/5	10	3/5	6	
Cost	10	3/5	6	5/5	10	2/5	4	
Portability and Maneuverability	10	5/5	10	4/5	8	3/5	6	
Durability	5	5/5	5	4/5	4	3/5	3	
Total (100)	100	Sum	83	Sum	92	Sum	68	

Presenter: Gab Zuern

Future Work

Prototyping the Cellringe Pump: Thread Regulated Injections

- 3D print injector base using Ultimaker PLA
- Fabricate feedback system and injection automation
- Install FSR 400 series force sensing resistor

Testing using all syringe sizes

- Force gauge testing
- Bovine steak injections
- Mesenchymal stem cell viability
- Correct volume dispensed

Figure 11: Trypan Blue Staining for Viability [EDVOTEK]

Acknowledgements

Dr. Amish Raval

Dr. Eric Schmuck

Dr. Melissa Kinney

Figure 12: The team at the UW Health University Hospital after experiencing a intramyocardial stem cell injection demonstration.

References

[Prevention, 2019] Centers for Disease Control and Prevention, "Leading Causes of Death," Centers for Disease Control and Prevention, 2019. https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm.

[Tomaselli, et. al, 2004] G. F. Tomaselli and D. P. Zipes, "What Causes Sudden Death in Heart Failure?," Circulation Research, vol. 95, no. 8, pp. 754–763, Oct. 2004, doi: 10.1161/01.res.0000145047.14691.db.

[Rheault-Henry et al., 2021] Rheault-Henry, M., White, I., Grover, D., & Atoui, R. (2021). Stem cell therapy for heart failure: Medical breakthrough, or dead end?. World journal of stem cells, 13(4), 236–259. https://doi.org/10.4252/wjsc.v13.i4.236

[Boyle et al., 2010] A. J. Boyle, I. K. McNiece, and J. M. Hare, "Mesenchymal Stem Cell Therapy for Cardiac Repair," Methods in Molecular Biology, vol. 660, pp. 65–84, 2010, doi: 10.1007/978-1-60761-705-1 5.

[Hmadcha et al., 2020] A. Hmadcha, A. Martin-Montalvo, B. R. Gauthier, B. Soria, and V. Capilla-Gonzalez, "Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy," Frontiers in Bioengineering and Biotechnology, vol. 8, no. 43, Feb. 2020, doi: 10.3389/fbioe.2020.00043.

[White, 2016] M. H. Amer, F. R. A. J. Rose, L. J. White, and K. M. Shakesheff, "A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of

Mesenchymal Stem Cells Using Narrow-Bore Needles," Stem Cells Translational Medicine, vol. 5, no. 3, pp. 366–378, Mar. 2016, doi: 10.5966/sctm.2015-0208.

[Wilburn, 2020] "Baxter Infus or Syringe Pump ABC 4100 Trade in Program." Wilburn Medical Equipment and Supplies,

https://wilburnmedicalusa.com/baxter-infus-or-syringe-pump-abc-4100-trade-in-program/.

[Apparatus, 2020] H. Apparatus, "Syringe Pumps," www.harvardapparatus.com, 2020. https://www.harvardapparatus.com/pumps-liquid-handling/syringe-pumps.html (accessed Feb. 20, 2022).

[CDC, 2019] C. for Disease Control and Prevention, "Sterilization," Centers for Disease Control and Prevention, 2019.

https://www.cdc.gov/infectioncontrol/guidelines/disinfection/sterilization/index.html (accessed Feb. 08, 2022).

References

[FDA, 2013] F. and D. Administration, "Guidance for Industry and FDA Staff: Technical Considerations for Pen, Jet, and Related Injectors Intended for Use with Drugs and Biological Products," Food and Drug Administration, 10903 New Hampshire Avenue, WO-32 Hub 5129 Silver Spring, MD 20993, Jun. 2013. Accessed: Feb. 08, 2022. [Online]. Available:

https://www.fda.gov/files/about%20fda/published/Technical-Considerations-for-Pen--Jet--and-Related-Injectors-Intended-for-Use-with-Drugs-and-Biological-Products.pdf.

[Raval et al., 2021] A. N. Raval et al., "Point of care, Bone Marrow Mononuclear Cell Therapy in Ischemic Heart Failure Patients Personalized for Cell potency: 12-month Feasibility Results from CardiAMP Heart Failure roll-in Cohort," International Journal of Cardiology, vol. 326, pp. 131–138, Mar. 2021, doi: 10.1016/j.ijcard.2020.10.043.

[Doumit et al., 2016] A. Vo, M. Doumit, and G. Rockwell, "The Biomechanics and Optimization of the Needle-Syringe System for Injecting Triamcinolone Acetonide into Keloids," Journal of Medical Engineering, vol. 2016, 2016, doi: 10.1155/2016/5162394.

[Raval, 2022] Dr. A. Raval, "Manufacturing cost of final automatic injection system product," Jan. 2022

[Electronics, 2021] I. Electronics, "FSR 400 Data Sheet Figure 1 -Typical Force Curve Industry Segments Interlink Electronics -Sensor Technologies FSR 400 Series Round Force Sensing Resistor," 2021. Accessed: Feb. 15, 2022. [Online]. Available: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf. [Arduino, 2022] "Arduino - H," www.arduino.cc, https://www.arduino.cc/en/math/h.

[Motor, 2020] O. Motor, "Speed Control Motors - Variable Speed Motors," Orientalmotor, 2020. https://www.orientalmotor.com/speed-control-motors/index.html (accessed Feb. 15, 2022).

[Industries, 2022] A. Industries, "Stepper Motor - NEMA-17 Size - 200 steps/rev, 12V 350mA," www.adafruit.com, 2022.

https://www.adafruit.com/product/324?gclid=Cj0KCQiAjc2QBhDgARIsAMc3SqQi_8rpHenYK-iXt9KMn2Y-33zOxCpePZHOu_C26oTAriVpTp67CgQaArgPEALw_wcB (accessed Feb. 21, 2022).

Questions?

