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ABSTRACT DESIGN CRITERIA

Chronic lung diseases such as pulmonary fibrosis, asthma, and chronic obstructive : :
| L o ® Tunable mechanical stiffness
pulmonary disease (COPD) can cause significant damage to the epithelial tissues of the
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lungs. Currently, no existing scaffolds accurately model the lung extracellular matrix o Normal tissue: 3.5 kPa

mechanical stiffness and porosity while also incorporating ECM proteins and promoting e Mimics biochemical properties of native lung ECM Rheology: (AIIVaIues derived

that accurately mimics the ECM increases. This project aims to create a replicable o Cell adhesive at 0.1 HZ) ) %
synthetic scaffold with uniform composition that allows for culturing of lung epithelial o0 Enzymatically degradable by matrix metalloproteinases (MMPs) For the normal gels, the x
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fibrotic gels had an average Figure 3: Categorical Scatter Plot of Gel Stiffness
Young’s Modulus (E) of 49.2 under Various Testing Conditions

FINAL DESIGN + 11.65 kPa.Young's

Modulus was calculated

cell adhesion.As the research on lung diseases evolves, the need for a synthetic scaffold
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fabrication procedures, and accompanying methods to test the hydrogel’s efficacy were
produced. The GelMA hydrogels will be fabricated and tested over the remainder of the
spring 2023 semester.

BACKGROUND e GelMA hydrogels created by crosslinking with UV light (365 nm) [3] using the equation E =
o0 Made f latin-based material that i ted with methacryli :
The extracellular matrix (ECM) is a network of proteins and 2ee !ﬂom SEIALN-DASEE MATETdT thal 15 TEACTed With methactylie 2G(l+u), where pis
anhydride Poisson’s ratio.

macromolecules [I]

o Provides support and mechanical/biochemical cues to cells o Addition of methacrylate (MA) groups allows for formation of physical gel

The Epithelial Mesenchymal Trophic Unit (EMTU) is comprised of [1]:
o Lung epithelial cells, surrounding ECM, subepithelial fibroblasts

at low temperature and to be photocrosslinked with UV light and
photoinitiator due to MA photosensitivity [4] DESIGN USE

Chronic lung diseases injure lung epithelium [2] Ao e " J\(
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FUTURE WORK

Fibroblast encapsulation
Protein encapsulation (collagen or fibronectin)
Cell viability assays

e Retains the RGD and MMP-degradable motifs that are naturally occurring in O Flow cytometry or immunohistochemical analysis (IHC)
gelatin [6] Degradation assay

, , . . o Incubation with collagenases and weight loss measurements taken
o Natural cell adhesion properties and enzymatic degradation over two weeks

Crosslinked GelMA hydrogel

Figure 2: GelMA hydrogel synthesis schematics [5]

MOTIVATION

Tissue models made from biomaterial scaffolds allow for the in vitro

modeling of biological phenomena that are difficult to investigate in vivo.These ® Tailorable mechanical properties
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researchers with a valuable tool to study disease mechanisms and develop
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target these specific changes.




