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BME Problem Statement

e Chronic lung diseases can cause damage to epithelial tissues of the lungs
e Pulmonary fibrosis, asthma, and COPD
e Damage causes the sub-epithelial fibroblasts to increase production
e Currently no scaffolds that accurately model the lung extracellular matrix and its
changes due to cell injury
e Varying mechanical stiffness, porosity, incorporation of collagen and fibronectin,
cell adhesive properties
e Dr. Brasier of the UW School of Medicine and Public Health requires such a scaffold
that allows for lung epithelial cell culture in an ALI
e Aimis to study cells in normal and fibrotic ECM conditions
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@ BME Lung Extracellular Matrix Background
W Desjgn

Extracelullar :;::i;{i? f:'j
e Lung ECM has many components a1 Y o
o Collagen, elastin, laminin, and fibronectin[1] #Z % L 7
e Lung epithelial cells adhere to the ECM via BT / = / S : .
intfegrins rach 4 i ?}J‘@b 5
o Cell adhesive sequences like RGD [1] o = f,,,/ i e —
e Fibroblasts and MMPs in the interstitial space o e 7 | R
remodel the ECM [1] y A iem?.“,a\'
o MMPs degrade ECM -~
o Fibroblasts produce collagen Airway
e Healthy stiffness ranges from 0.44 to 7.5 kPa due Figure 1: Lung ECM Diagrarm [2]

to heterogeneity
o The ECM around the fibroblasts is ~1 kPa
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Cell Culture Scaffold Background

3D cell culture:

e More accurately mimic in-vivo ECM ALl Submerged
e Allow cell-cell and cell-ECM interactions [3] VS
Air-liquid-interface (ALI): FLPRPREES )

e Basal surface (bottom): liquid culture medium _
e Apical surface (epithelial cells): air [4] Figure 2: ALl vs submerged model [4]

Natural vs synthetic hydrogels:

e Natural

o Gelatin, Alginate, Collagen

o Biodegradable, Adhesive Properties
e Synthetic

o Long lasting, replicable [5]
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Competing Designs

e 2D Models typically include layers of
cells on top of polymer or glass dishes

O Young's Modulus in 2-4 GPa range [6]
O Negatively impacts gene expression

e 3D Models
o  Matrigel
m  Derived from Mouse Tumors
m  High variability in batches [7]
o Human Lung ECM Hydrogels
o Hyaluronic Acid (HA) Hydrogels
m Incorporatedin PEG hydrogels

m Free Radical Toxicity

Complexity of culture

Matrigel

,‘_o,

Poorly defined 2D
stem-cell culture

Tumour-mimetic
3D cell culture

Variable organoid
assembly

| Chemically defined

* Xenogenic-free
* Tunable and controllable
* Reproducible

* Broadly applicable

/

Synthetic scaffolds

Defined 2D stem-
cell culture

A o
A

Tissue-mimetic, tunable
3D cell culture

Controlled organoid
assembly

Figure 3: Competing Scaffold Design [8]
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Design Specifications

Preservation and facilitation of cell to cell communication
Support of encapsulated fibroblasts and coated epithelia

Epithelial polarization [4]

Tunable mechanical properties [9]

e Healthy 0.2-2 kPa
e Fibrotic 3-35 kPa

Cell adhesion to hydrogel

® Reconstructive allowance of hydrogel
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Scaffold Design Matrix

Table 1: Design Matrix for Tissue Model Scaffold

Matching mechanical properties
o 2kPato 35kPa[10]
o  Ourfocus: 2 kPaand 17 kPa
Matching biochemical properties
o Cell adhesion motifs
o Reconstructive motifs
Ability to fabricate
Ability for client to use design
o Reproduction
o Client research
Manipulating mechanical properties
o Gradient of elasticity
Manipulating biochemical properties

.
atw

DEPARTMENT OF

Design 1: Gelatin Design 2: Design 3: Lung ECM e
Methacrylate Polyethylene Glycol
(GelMA) (PEG)
Design Weight | Score | Weighted Score Weighted Score Weighted
Criteria Score Score Score [
Mechanical 20 4/5 16 4/5 16 2/5 8
Properties
Biochemical 20 4/5 16 3/5 12 5/5 20
Properties ¢
Ease of 15 4/5 12 2/5 6 1/5 3 ®
Fabrication
Ease of Use 15 2/5 6 1/5 3 1/5 3
Mechanical 10 4/5 8 4/5 8 1/5 2 Y
Tunability
Biochemical 10 3/5 6 4/5 8 1/5 2
Tunability o
Cost 10 5/5 10 3/5 6 1/5 2
Total: 100 74 59 40 ‘ Winner Tie ‘
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Preliminary Scaffold Designs

Polyethylene Glycol (PEG): 59 Gelatin Methacrylate (GelMA): 74 Lung ECM: 40 [14]

e Doesn't have any natural e Inherently biochemically e Nativelung ECMis
adhesive or degradation active, has natural RGD and constructed from
sequences|11] MMP sequences [12] decellularized lung and

. zgg;g”d MMPsequencescanbe o  Megchanical properties can has the same
be altered by the degree of biochemical properties

e Mechanical properties are

capable of being tuned within the methacryloyl sub?rifu’rions e Hydrogels constructed

native lung elastic modulus of 2 and greo’red ’rp mimic the from Iung ECM are not

KPa to 16 kP elastic moduli of normal and mechanically tunable

. } o fibrotic lung [13] e  Won't maintain original

e Fabrication process is difficult e Canhave batch to batch mechanical properties

due to photoinitiator solubility variation e Native lung tissue is

issues e GelMA s significantly expensive and difficult o
e Polyethylene glycolis inexpensive cheaper than PEG or Lung obtain

but the MMP and RGD are costly ECM
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Future Work

Testing

e Mechanical Stiffness
Porosity/Permeability
Translucency
Cell Adhesiveness and Proliferation
Degradability

e Reproducibility
Testing Upon Model’s Success

e Client will:

e Perform cell culture

e Use scaffold forimaging
e Incorporate fibroblasts into scaffold
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