Knee Arthroscopy Manikin

Client:	Corinne Henak	
Consultants	Corinne Henak, Russ Johnson	
Team:	Shrey Ramesh (leader)	Delaney Reindl (leader)
	Jack Thurk (accountant)	Connor Dokken (communicator)
	Sierra Reschke (admin)	Rachel Dallet (admin)

Status

<u>Report Date:</u> 03/07/2024 <u>Next Milestone:</u> Working Prototype <u>Deadline:</u> 03/08/2024 <u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

Important aspects of this past week include meeting with Dr. Henak and Dr. Johnson to discuss weekly updates as well as to receive feedback on the progress of each project division. For the pump team, the reservoir box was fabricated and it was tested with the current nitrogen bubbler and dissolved oxygen sensor. Any areas of the reservoir were further sealed with epoxy to prevent leaks. For the bone team, the attachment mechanism was updated by acquiring new wire. The stress analysis of the bones/enclosure mechanism and experimentation with the new wire are still underway. For the enclosure team, the complete enclosure was assembled and was attached to the reservoir. All teams are currently in the process of assembling the full prototype containing the bones, reservoir, and enclosure, ensuring that liquid can properly flow through without leakage or obstruction of attachments.

New Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as		
	well.		

Continue working on the	After emailing with Dr. Henak, we tried to use	RD	2.5 hr
stress analysis	Gmesh instead of FEBio. Our computers still		
	don't seem to be working with either software.		
	I might need to go into an engineering lab and		
	do it on one of those computers. I will also try		
	her new suggestions: GIBBON and Tetgen.		
Plan and attend our BME	The BME side of the team signed up to run an	RD	3 hr
outreach activity	activity at a local elementary school science		
	fair. Meet with the team to figure out the		
	details on that and go to the school on		
	Tuesday, March 12.		
Continue working on	The .step file I downloaded from the	SGR	2 hrs
stress analysis	SOLIDWORKS model does not open in either		
	FEBio or gmesh due to the fillets. Dr. Henak		
	suggested trying GIBBON or tetgen, which		
	Rachel and I will both try to implement this		
	week. We will continue to work with Dr.		
	Henak as needed.		
Plan and prepare for	Now that the team has our outreach date	SGR	2 hrs
outreach	planned and have decided on an activity, we		
	will work to write up a detailed outline and		
	plan. We will also need to continue		
	communicating with the event coordinator to		
	ensure the supplies we need are either		
	available or can be borrowed.		
Attachment mechanism	Work to implement the wire for the	SGR	2 hrs
wire and prototype	attachment mechanism and test its		
assembly	functionality. Work with the other teams to		
	hopefully have a full initial prototype		
	assembled for next Friday.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time

Assist in enclosure	Shrey and I will assemble the enclosure with	DR	2 hrs
assembly	the materials and frame. This will also involve		
	ensuring the bones fit properly into the model.		
Help prepare/plan for	We are deciding on what activity to go	DR	1.5 hrs
outreach	forward with for outreach.		
Attend BME Outreach	We will be attending our BME Outreach on	DR	2.5 hrs
	3/12. At this we will be presenting a		
	biomedical engineering activity to children.		
Test Enclosure	Put the enclosure through standard use	SKR	1 hr
	scenarios including bending and applied		
	pressure		
Attend Outreach	Attend and participate in outreach at the	SKR	2.5 hrs
	middle school		
Connect the enclosure to	Coordinate with the pump team to determine	SKR	3 hrs
the reservoir	how the enclosure handles fluid flow.		

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Finish reservoir and	Finish sealing reservoir and constructing new	CD	1.5 hr
bubbler	bubbler		
Test reservoir and bubbler	Communicate with Dr. Henak and test the	CD	2 hr
	reservoir / bubbler to see how long it takes to		
	de-oxygenate water with nitrogen gas using		
	our current bubbler		
Help setup testing for	Help set up and test the entire enclosure	CD	2.5 hr
whole system	assembly and inserting the ports for the		
	pumps. Set up pumps for testing with		
	enclosure if testing is going well.		
Fasten the bubbler to the	To disperse the nitrogen effectively, the	JT	3 hr
bottom of reservoir	bubbler might have to be fastened to the		
	bottom of the reservoir to bubble the PBS		
	from the ground up. To do this, a design, a		
	possible ordering of materials, and a		
	fabrication will be needed to secure the		
	bubbler to the bottom of the reservoir. This		

	task will be most effective once some testing		
	is done with the more permanent bubbler,		
	finished reservoir and Nitrogen testing.		
Test the reservoir with	Now that the reservoir has been fabricated, the	JT	3 hr
nitrogen and the dissolved	bubbler will be fastened in a more permanent		
oxygen sensor.	way to the bottom of the reservoir. Once		
	fastened, the bubbler and reservoir should be		
	tested with the Nitrogen source and Oxygen		
	sensor to make sure that all runs well.		

Old Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est. Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as well.		
After asking clarifying	Sierra and I ran into some issues running a	RD	4 hr
questions, retry the stress	stress analysis that are listed in the technical		
analysis.	section below. Clarify with Dr. Henak at the meeting and run it again.		
Experiment with new wire	Some group members are going to Home Depot to test out some new wire. Once we buy that, I need to see how easily it can bend compared to the last wire.	RD	1.5 hr
Work on stress analysis	Ask Dr. Henak about the issues Rachel and I ran into with conducting the stress analysis on the enclosure. Import the new model and try to run the analysis again based on feedback received.	SGR	3 hr
Update attachment mechanism wire	Work with the team to test and order a thinner wire. Once it arrives, work to implement the attachment mechanism with the new wire	SGR	2 hr
Assist with full prototype assembly	Continue working with the enclosure and pump teams to make sure we are all on the same page and begin to start thinking about	SGR	1 hr

assembling a full prototype and conducting	
tests.	

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Assemble complete	Assemble the enclosure using the plastic bag,	SKR	3 hrs
enclosure	silicone, and hose clamps. Fill with water to		
	determine points of potential leakage and		
	brainstorm solutions		
Connect the enclosure to	Coordinate with the pump team to determine	SKR	3 hrs
the reservoir	how the enclosure handles fluid flow.		
Help with complete	Assemble the duct clamps, press-to-close bag,	DR	3 hrs
enclosure assembly	and silicone along with the frame as the first		
	enclosure. Test using water to determine if the		
	assembly prevents fluid leakage.		
Finalize material	Determine material enclosure plan for	DR	3 hrs
enclosure plan	assembly.		

Ритр Теат

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Test all components	Check the reservoir for leakage and put	CD	4 hr
together with enclosure	together inlet/outlet/bubbler tubes using		
team	suction cup clamps. Test fluid flow rate sensor		
	with pump to see if it is a suitable replacement		
	for pressure gauge (pending shipping time).		
	Test the seal of the ports on the enclosure and		
	assist Shrey with the enclosure testing as		
	necessary, and if all is going well test the		
	entire system except bones/live cartilage.		

Test current bubbler with	If possible (or worthwhile) test the current	CD	2 hr
dissolved oxygen sensor	bubbler and reservoir with Nitrogen gas and		
and reservoir	dissolved oxygen sensor to determine whether		
	or not the current bubbler design can		
	effectively lower dissolved oxygen		
	concentration in the selected reservoir volume.		
Test the reservoir with	Now that the reservoir has been fabricated, the	JT	3 hr
nitrogen and the dissolved	bubbler will be fastened in a more permanent		
oxygen sensor.	way to the bottom of the reservoir. Once		
	fastened, the bubbler and reservoir should be		
	tested with the Nitrogen source and Oxygen		
	sensor to make sure that all runs well.		
Seal ports to prevent leaks	Once the whole pump system is put together	JT	3 hr
	and even tested with the enclosure, sealant		
	should be applied to the ports and connection		
	points to help prevent leaks as well as prevent		
	possible vibrations from loosening the port		
	connections. The sealant that would be used		
	will be biocompatible and would be suitable		
	for sealing connection points between the		
	pressure gauge and T-bracket. However,		
	sealant will not be ordered until the new fluid		
	flow rate sensor Connor ordered has been		
	shipped and tested.		

Technical Section

Author: Sierra Reschke

Update attachment	Work with the team to test and order a thinner	SGR	2 hr
mechanism wire	wire. Once it arrives, work to implement the	it arrives, work to implement the	
	attachment mechanism with the new wire		

The wire was ordered and Rachel and I will work to implement it in the upcoming week. We will conduct tests to determine its functionality (even if we just simulate the live tissue prior to scheduling a time to go into Dr. Henak's lab to test with the live tissue again).

Author: Delaney Reindl

Help with complete	Assemble the duct clamps, press-to-close bag,	DR	3 hrs
enclosure assembly	and silicone along with the frame as the first		
	enclosure. Test using water to determine if the		
	assembly prevents fluid leakage.		

The enclosure was assembled with the duct clamps, press-to-close bag, silicone sheeting and 3D printed frame. This will be attached to the reservoir tubing to ensure that fluid can flow through without any leakages.

Connect the enclosure to	Coordinate with the pump team to determine	SKR	3 hrs
the reservoir	how the enclosure handles fluid flow.		

The enclosure is completed, but the ports to ensure compatibility with the pump system have not been attached. Feedback from Dr. Henak and Russ will help us choose a direction on how this is completed.

Assemble complete	Assemble the enclosure using the plastic bag,	SKR	3 hrs
enclosure	silicone, and hose clamps. Fill with water to		
	determine points of potential leakage and		
	brainstorm solutions		

I updated the CAD for all the components to ensure compatibility with each other and printed them at the makerspace. The assembled product will be ready to show in the meeting on Friday

Gantt Chart

	Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
--	--	--

	Feb			Mar			Apr				May				
Task	2	9	16	23	1	8	15	22	29	5	12	19	26	3	10
Individual Presentations				0											
Testing	Х														
Redesign and Fabrication	X	Х	Х	X											
Presentations				X											
Working Prototype Demonstration									0						
Redesign															
Fabrication															
Presentation and Demonstration															
Final Presentation															
Testing															
Report															
Presentation															

X = Completed Tasks, O = Milestone Deadlines