

Diagnostic EEG System for Viral-induced Epilepsy

February 10th, 2025

Client: Dr. Brandon Coventry Advisor: Prof. Amit Nimunkar Team: Richard Yang, Ellie Dingel, Mark Rice, Elliott Harris

Overview

- Problem Statement & Background
- Client Introduction
- Product Design Specifications
- Head cap and ear clip
- Embedded system and GUI
- Analog front-end
- Future Works
- Reference & Acknowledgements

Problem Statement

- 50 million people are affected by Epilepsy worldwide
- Detection of Epilepsy using EEG is expensive
- Cost can range from \$200 \$3000
- Affordable EEG technology
- Create the following components:
 - EEG cap
 - Amplification/filtering of signal
 - Embedded system
 - Graphic User Interface

Client Introduction

Dr. Brandon Coventry

- Wisconsin Institute for Translational Neuroengineering
- Post doctoral fellow in the department of Neurosurgery
- Neuromodulation within the thalamocortical circuits
 - Optical tools
 - Artificial intelligence

Figure 2: Dr. Brandon Coventry

TECH Collaborators

- Jesse Montoure, M4
 - Neurology
- Tai le, M1
 - Undecided

TECHNOLOGY, ENTREPRENEURSHIP CHANGING HEALTHCARE

Figure 3: TECH Collaborators

Product Design Specification

- Remain in operation for 3-4 years
- Head cap circumference between 50-64
 cm
- Sample at 1kHz with 12-bit resolution
- Able to accommodate 10 different channels
- Cost of complete design under \$100

Figure 4: Example EEG Procedure [2]

Design Alternatives

Product	Channel Count	Sampling Rate (Hz)	Bit Depth	Wireless	Cost (USD)	En \$1
Neurosky MindWave	1	512	12	Yes	130	
Muse2	4	256	12	Yes	300	
Emotiv MN8	2	128	14	Yes	400	
Emotiv Insight	5	128	16	Yes	500	
Emotiv EPOC X	14	256	14-16	Yes	1000	
Emotiv Flex Saline	32	256	16	Yes	2000	
Open BCI Complete Kit	16	125	24	No	2500	
Open EEG	2-6	Up to 15.4k	10	No	200-400	

Entire system \$130-\$2500

Table 1: Summary of Existing Designs

Head Cap and Ear Clip - Previous Fabrication

<u>Head Cap</u>

- ~20g + 40g supports.
- ~\$5 printed in TPU.
- Anatomically derived [6].
- S, M, L sizes: 50, 55, 60 cm head circumference.
- Adjustable for electrodes.
- Space for hair.

<u>Ear Clip</u>

- Earclip for reference and driven right leg.
- ~1g ~\$0.05.
- Mechanical failure during testing

Head Cap and Ear Clip - Previous Testing

<u>Head Cap</u>

- Mean 6-7% placement error, 2-13% standard deviation.
- Measured expected and actual electrode placement for 10-20 layout from nasion to inion.

<u>Ear Clip</u>

• Mean Borg discomfort value after 10 minutes of 9.75 with a standard deviation of 1.09.

Head Cap and Ear Clip - Fabrication and Testing

Head Cap Fabrication:

- Pivot design to fabric design
 - Easier to fabricate
 - Fits range of head sizes
- Secure attachment of all electrodes
- Possibly add chin strap to secure for better signal

New testing methods:

- Test the signal of each electrode while attached to the head cap
- Test on different head/hair types

Ear Clip Fabrication:

- Create more durable design to meet product design specifications
- Secure attachment of electrode

New testing methods:

- Durability testing of both electrode and ear clip
- Include ear clip performance in the testing of both head cap and ear clip

Embedded System & GUI - Fabrication

Embedded System (C)

<u>GUI (Python)</u>

- Communicate with and control
 MUX
 - MUX
 - Programmable Gain
- Read data and send to GUI

(USB)

- Receive data (USB)
- Record Data (excel, txt)
- Live Display data

Embedded System & GUI - Evaluation & Testing

Embedded System (C)

<u>GUI (Python)</u>

- MUX:
 - When given 2+ signals, can it separate them correctly?
- Programmable Gain:
 - Does outputted signal have expected gain?

- When 2+ signals does it display them correctly?
- Can run for at least 2 hours?
- Can a novice user navigate the GUI without training?

Previous Work Front-End Circuitry

Designed two different configurations

- INA \rightarrow Level Shifter \rightarrow MUX \rightarrow Bandpass \rightarrow MCU
- INA \rightarrow Bandpass \rightarrow Level Shifter \rightarrow ADC \rightarrow MUX \rightarrow MCU

Routed in Altium

- Included both designs for testing
- Printed via PCBWay (R)
- Components Separate

Assembled PCB Board

- Hand-soldered components
- Discovered multiple faulty traces
- One complete channel from INA to MUX functioning

Figure 10: Routed PCB Version 1

Previous Testing Circuitry

<u>Theoretical Passband</u> (0.1-168 Hz)

- Achieved 0.1-200Hz passband
- Within tolerance

Theoretical Gain (6,000 V/V)

- Achieved 3,333V/V
- Combination oscilloscope, wave generator, and component uncertainty

Bode Plot For Instrumental Amplifier and Bandpass Filter

Figure 9: Bode Plot from testing PCB Version 1

Analog Front-end - Fabrication

Circuit Schematic and Routing in Altium

- Select appropriate configuration via testing results
 - Improve gain accuracy
 - Reduce artifacts with MUX
- Surface mount all components

Print PCB

- Oshpark
- Components pre-soldered

<u>Connect Electrodes</u>

Figure 11: Populated PCB board Version 1

Analog Front-end - Evaluation & Testing

Basic confirmations

- Frequency response
- Ten-channel acquisition
- Baseline drift (<0.5 Hz/s)

<u>Quality quantification</u>

- Signal-to-Noise ratio
- Common mode rejection ratio
- Power supply rejection ratio

Comparison with clinical EEG systems

• Tucker-Davis Technology Bioamplifier

$$x(t)=s(t)+d(t)+arepsilon(t)$$

Equation 1

Analog Front-end - Evaluation & Testing

Basic confirmations

- Frequency response
- Ten-channel acquisition
- Baseline drift (<0.5 Hz/s)

<u>Quality quantification</u>

- Signal-to-Noise ratio
- Common mode rejection ratio
- Power supply rejection ratio

Comparison with clinical EEG systems

• Tucker-Davis Technology Bioamplifier

$$V_{out} = A_d (V_+ - V_-) + A_{cm} rac{(V_+ + V_-)}{2} + A_p v_p \, .$$

$$CMRR_{dB} = 20 \log_{10} \left(rac{A_d}{A_{cm}}
ight)$$

$$PSRR_{dB} = 20 \log_{10} \left(rac{A_d}{A_p}
ight)$$

Documentation/Packaging

- Safety precautions
 - Storage environments
 - Powering on/off the device
- Cleaning instructions
- Troubleshooting electrode signal instructions
- Head cap, ear clip, circuit board, and electrodes can be sold in one box

- GUI and Embedded code commented and documented, publicly available via GitHub
- Video and text tutorials for GUI and full prototype
- Vacuum seal around each component to ensure no water damage
- Place each component in foam cut outs to avoid large impacts

Reference

- "Epilepsy," Mayo Clinic, https://www.mayoclinic.org/diseases-conditions/epilepsy/diagnosis-treatment/drc-20350098 (accessed Oct. 3, 2024).
- "Can an EEG detect traumatic brain injury?," Neurodiagnostics Medical P.C., https://neuroinjurycare.com/can-an-eeg-detect-traumatic-brain-injury/ (accessed Oct. 3, 2024).
- [3] OPENBCI, "EEG Electrode Cap Kit." Accessed: Sep. 18, 2024. [Online]. Available: https://shop.openbci.com/products/openbci-eeg-electrocap
- [4] Contec, "CONTEC NEW Standard Adjustable Rubber EEG cap For EEG machine KT88-3200," CONTEC, 2019.
 https://contechealth.com/products/contec-new-standard-adjustable-rubber-eeg-cap-for-eeg-machine-kt88-3200?variant=4
 3685387469029¤cy=USD&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campa
 ign=sag_organic&srsltid=AfmBOoqbo0xTPKwmFi5n631cKRvb3jyqairhy1mGPAH7mP_eJKc-fyP1e_A (accessed Oct. 04, 2024).
- [5] A. McCann, E. Xu, F.-Y. Yen, N. Joseph, and Q. Fang, "Creating anatomically-derived, standardized, customizable, and three-dimensional printable head caps for functional neuroimaging," bioRxiv, p. 2024.08.30.610386, Jan. 2024, doi: 10.1101/2024.08.30.610386.
- [6] "Durometer Shore Hardness Scale Explained | AeroMarine." Aeromarine Products Inc., 30 July 2020, www.aeromarineproducts.com/durometer-shore-hardness-scale/.

Acknowledgement

The team extends sincere thanks to our advisor Prof. Nimunkar and our client Dr. Coventry for their feedback and continuing support! The team would also like to thank the BME 400 administrators and support staff that make this course possible.